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Abstract

Acid sulfate (AS) soils contain sulfidic 
compounds formed in anaerobic conditions. In 
aerobic conditions, they will oxidize to sulfuric 
acid, which commonly lowers the pH to 3 – 4. 
These soils cover approximately 10,000 km2 in 
Finland, mainly on the western coast, and over 
170,000 km2 globally. Acidity and the metals 
dissolved from the soil matrix and leached out 
of the soil are serious threats to aquatic biota. 
Initially, AS soils were regarded as an  
exclusively agricultural problem, but since the 
1970s nearly all studies of AS soils have been 
environmentally motivated. Awareness of these 
soils has also risen in forestry, peat mining, 
and in engineering projects. Liming and water 
management are the key methods toward the 
sustainable use of these soils.  
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1. Processes in acid 
sulfate soils

Acid sulfate (AS) soils contain or have 
contained sulfidic material that can cause 
severe soil acidification. They are typically 
formed in the sediments of shallow waters 
along sea coasts throughout the world. A 
rough estimate of their global area is over 
170,000 km2 (Andrisse & Mensvoort, 
2006) which is probably a strong underes-
timation (Fitzpatrick et al., 2010). These 
soils are particularly common in wet 
coastal areas of the Tropics, most promi-
nently in Southeast Asia, in West Africa, 
on almost all coasts of Australia, and in the 
Caribbean. In the USA, most of these soils 
are recorded in Maryland and Virginia. In 
Europe, AS soils were first recognized in 
the Netherlands but they cover the largest 
area in the Baltic Basin, particularly in 
Finland (Purokoski, 1959; Puustinen et al., 
1994; Åström & Björklund, 1995; Yli-Halla 
et al., 1999) but also in Sweden (Öborn, 
1989) and Denmark (Madsen et al., 1985). 

Prerequisites for the accumulation of 
sulfidic material are 1) sulfate (SO42-–S), 
abundant in the sea water; 2) fresh organic 
matter (OM), commonly originating from 
reeds or mangrove vegetation along the 
coastline; 3) heterotrophic microbes that 
can utilize sulfate as their electron 
acceptor while using OM for energy and 
carbon; 4) reducing conditions in water-
logged environments; and 5) soluble iron 
(Fe2+), mobilized from the soil material in 
reduced conditions (Dent, 1986). Sulfate is 
reduced to hydrogen sulfide (H2S) which 
reacts with Fe2+ and causes the precipita-
tion and accumulation of iron mono-
sulfide (FeS) in the sediment. These 
reactions are summarized in the equation 

below, where CH2O stands for OM:

Fe(OH)3 + SO42- + 9/4 CH2O →  
FeS + 2 HCO3- + ¼ CO2 + 11/4 H2O       (1)	

Over time, monosulfide is at least partially 
converted to pyrite (FeS2). In Finland, the 
accumulation of sulfidic material took 
place particularly during the Litorina 
period (approximately 7,500 – 4,000 years 
ago), when the temperature and SO42- 
concentration in the sea water were higher 
than today. Sulfidic material is still 
forming on the reedy coasts of Finland. 

Sulfidic material is stable in water-
logged conditions, and the pH of a 
water-logged sulfidic sediment or soil 
horizon varies from neutral to slightly 
alkaline. When exposed to atmospheric 
oxygen, sulfidic material is oxidized in 
several steps to sulfuric acid and iron 
hydroxide as demonstrated in the follow-
ing equations (Dent, 1986):

FeS2 + 15/4 O2 + 7/2 H2O → 
Fe(OH)3 + 2 SO42- + 4H+		         (2)

2FeS + 9/2 O2 + (n+2) H2O → 
Fe2O3 · nH2O + 2 SO42- + 4H+	        (3)

These reactions result in a sharp decrease 
in pH because the bicarbonate has leached 
away (see Eq. 1). Soil pH of 3.5 or below 
firmly indicates that sulfidic material is 
actively oxidizing and producing sulfuric 
acid. Along the Finnish coasts, there are no 
calcareous sediments to neutralize this 
acidity. 

When released to the soil solution, 
SO42- mostly remains in the pore water 
and leaches out of the soil during rain and 
snow melt periods. Leakage from AS soils 
is commonly recognized as an unusually 
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Over an  
undefined number 
of decades,  
the stock of the 
sulfidic material is 
gradually ex- 
hausted and the 
abundant loading 
of the substances 
decreases.

high electrical conductivity of the dis-
charge water. Decreased soil pH results in 
the dissolution of metals from the soil 
matrix. The dissolution of aluminum (Al), 
occurring abundantly in all soils in 
sparingly soluble forms, is particularly 
important. When the soil pH decreases to 
4 or below, Al3+ will release to the soil 
solution. The trivalent cation Al3+ has a 
high affinity to the negatively charged sites 

of soil particles, where it displaces other 
cations (e.g., Ca2+ and Mg2+). At the initial 
stage of the oxidation, SO42- in the 
leachate is mostly accompanied with Ca2+ 
and Mg2+, displaced from the cation 
exchange sites by Al3+. When the oxidation 
continues, the concentrations of Ca2+ and 
Mg2+ decrease and the concentration of 
Al3+ increases because the respective 

horizons become increasingly saturated 
with Al3+ and depleted in exchangeable 
Ca2+ and Mg2+ (Hartikainen & Yli-Halla, 
1986). Over an undefined number of 
decades, the stock of the sulfidic material 
is gradually exhausted and the abundant 
loading of the substances decreases. 
However, soil pH is not elevated to the 
original level but commonly remains 
around 4, no matter how much the soil is 
leached.

Often, AS soils are divided into three 
categories according to each stage of the 
oxidation process (Fanning & Fanning, 
1989). Soils containing sulfidic material 
that has not yet begun to oxidize are called 
potential AS soils. Sulfidic material is 
currently oxidizing in active AS soils. 
Finally, post-active AS soils no longer 
contain sulfidic material, and much of 
their soluble oxidation products have 
already leached away.

The redox reactions of AS soils have 
consequences for the solubility and 
mobility of several elements in the soil. In 
anoxic conditions, microbial activity, 
boosted by fresh OM, is the driving force 
to decrease redox potential and conse-
quent changes in the oxidation states of 
elements, particularly S and Fe. This is 
followed by the precipitation of new solid 
phases (FeS, FeS2) in the soil/sediment 
matrix. Upon the introduction of atmos-
pheric oxygen, the redox potential rises 
again and the oxidation of both Fe and S is 
launched, changing their solubility. In 
response to the decreased pH, several 
metals dissolve into the pore water, 
increasing the cation exchange reactions. 
When this system receives excess water, 
acidic pore water and the many solutes 
therein leach into the watercourses. 
Repeated drying and wetting cycles  
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(i.e., recurrent oxidation and leaching) 
gradually deplete the sulfidic material, 
leaving behind an acidic soil nearly 
saturated with Al3+, while SO42- is trans-
ported back to the sea. Much of the Fe 
remains in the soil and is precipitated on 
the surfaces of soil aggregates.

2. Morphological 
features of acid 
sulfate soils

Remarkable morphological changes take 
place after the sulfidic soil material is 
exposed to atmospheric oxygen, resulting 
in spectacular color changes (Fig. 1a). 
Horizons containing sulfidic material are 
originally structureless, with no aggregates. 
These massive horizons are soft, with a 

very low bearing capacity, but almost 
impermeable to water. In Finland, where 
the sulfidic material often contains a 
substantial amount of FeS, these horizons 
are easily recognized from their (bluish-)
black color (Fig. 1b). In southern Finland, 
sulfidic material may be dominated by 
FeS2, resulting in grey horizons, more 
difficult to recognize. 

After natural or artificial drainage, the 
soil loses water, gains consistency, and 
shrinks irreversibly in a process called 
ripening. Cracks are consequently formed 
because the drier material no longer fills 
the space it filled originally. At the earliest 
stage of the ripening, there are only a few 
cracks in the soil containing large pris-
matic aggregates between the cracks. 
However, the number of the cracks 
increases and the aggregates become 
smaller over time. As this occurs, the soil 
becomes increasingly permeable to water. 

 

 

 

 

 

Fig. 1 

Fig. 1. A typical color pattern of an AS soil from Mustasaari, containing a bluish-black 
reduced subsoil (below 150 cm), an oxidized horizon with many iron hydroxide coatings on 
the large prismatic aggregates (130-150 cm), a ripe horizon consisting of smaller aggregates 
with iron hydroxide coatings (30-120 cm), and a plough layer (a). The reduced subsoil can be 
entirely black, as in Ylistaro (b). The pale yellow color of the jarosite is typical of an oxidized 
horizon (c). Photos by Markku Yli-Halla.
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The cracking allows air to enter the soil, 
resulting in the oxidation of the sulfidic 
material. Divalent Fe is also oxidized after 
it diffuses from reduced zones to the 
oxidized environment on the surfaces of 
the aggregates. There, it precipitates as 
reddish-brown oxides, which can form a 
uniform coating onto the aggregate 
surfaces (Fig. 1a). Therefore, the oxidized 
horizons of AS soils typically have a strong 
aggregate structure stabilized by rusty 
coatings. 

Pale yellow spots are also typical of the 
oxidized horizons of AS soils (Fig. 1c). 
This color originates from jarosite, 
KFe3(SO4)2(OH)6, a mineral that is an 
intermediate product of the oxidation. 
This color is diagnostic for AS soils. 
Jarosite is only stable in soils with a pH<4. 
In less acidic soil horizons, it is gradually 
decomposed. Therefore, the presence of 
jarosite is a good indicator of the most 
acidic horizon of the soil profile. Schwert-
mannite, Fe8O8(OH)6(SO4), is another 

intermediate, semi-stable product of 
sulfide oxidation. Both jarosite and 
schwertmannite are found in the AS soils 
of Finland. The decomposition of these 
minerals results in the continued release of 
acidity according to the following equa-
tions (Dent, 1986):

KFe3(SO4)2(OH)6 → 
3FeOOH + K+ + 3H+ + 2SO42-	        (4)

Fe8O8(OH)6(SO4) + 2H2O → 
8FeOOH + SO42- + 2H+	  	        (5)

A typical feature of AS soils specifically 
and wet soils more generally is the 
formation of pipestems around former 
root channels (Fig. 2), which function in a 
similar manner as the desiccation cracks. 
These pipestems serve as routes for 
atmospheric oxygen, such that the surface 
of the former root channel is aerobic. 
Soluble Fe2+ oxidizes and precipitates 
when it diffuses from the water-logged 

 

 

 

 

 

Fig. 2 
Fig. 2. Pipestems developed around the former root channels in the subsoil (a). These 
pipestems consist of soil material cemented by iron hydroxides (b). Root cortex cells and 
precipitated iron hydroxide can be seen in thin section images (c). Photos by Markku Yli-Halla 
(a, b) and Larry Wilding and Richard Drees, Texas A&M University (c).    
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interior of an aggregate to the oxidized 
environment near the root channel. The 
resulting precipitate cements the soil 
particles together, allowing for a strong 
pipe to be formed. Jarosite and schwert-
mannite are also commonly observed in 
these pipestems (Fig. 3).

3. Occurrence of acid 
sulfate soils

In Finland, AS soils mostly occur below 
the highest shore-line of the ancient 
Litorina Sea, which is approximately 30-50 
m above the current sea level (a.c.s.l.) in 
southern Finland and 90-100 m a.c.s.l. in 
northern Finland. Sulfidic material has 
gradually emerged from the sea due to 
isostatic rebound, which has been more 

pronounced in the north. Not all land 
between the uppermost shore of the 
Litorina Sea and the current coast-line 
consists of AS soils; rather they make up a 
portion of the fine-grained (silt and finer) 
soils in this region. Although the most 
extensive areas of AS soils are located 
along the Gulf of Bothnia, they have also 
been found along the southern coast 
(Purokoski, 1959; Puustinen et al., 1994). 

Strongly acidic soils similar to the 
coastal AS soils can be found in locations 
far from the sea (e.g., Kivinen, 1944; 
Räisänen & Nikkarinen, 2000). In these 
inland soils, acidity has been found to orig-
inate from black schists containing pyrite 
(FeS2). The reactions that occur in AS soils 
are indeed similar to those that occur in 
the environments where sulfidic minerals 
are mined, commonly associated with the 
acid mine drainage problems. 

Fig. 4 demonstrates that the depth of 

 

 

 

 

 

Fig. 3 

Fig. 3. Scwertmannite precipitated in former root cortex cells (a), schwertmannite precipitate 
(b), and jarosite, identified by the typical form of crystals (c), all in the pipestems of Ylistaro 
soil. Scanning electron microscope images taken by Leigh Sullivan (Southern Cross Universi-
ty, Australia) and Markku Yli-Halla.
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the sulfidic material has an impact on the 
environmental loading caused by drained 
AS soils. In three agricultural soils, the 
sulfidic material was found at depths of 65 
cm, 150 cm and 190 cm with average 
discharge water pH levels of 3.5, 3.8 and 
4.3 in Liminka, Mustasaari, and Ilmajoki, 
respectively.

Research on AS soils in Finland began 
with a focus on agricultural land because 
crop growth suffered drastically from 
severe acidity in certain coastal fields 
(Kivinen, 1944; Purokoski 1959) where 
sulfidic material was apparent near the soil 
surface. These fields became productive 
farmland after liming and effective 
drainage. These measures elevated the 
topsoil pH and allowed the soluble 
products of sulfide oxidation to leach into 
watercourses. 

The occurrence of sulfidic material is 
not limited to fine-grained soils, which are 
mostly reclaimed for agricultural use. 

Sulfidic material is often found below 
peat layers because it is preserved in a 
reduced state in peatland environments. 
In peat extraction areas of Finland, sulfide 
concentrations of up to almost 5% have 
been documented in the mineral subsoil 
(Nystrand et al., 2021). If such a mire is 
drained for peat excavation, there is a 
substantial risk of acidification. These 
sulfidic materials can originate from both 
the sediments of the Litorina Sea and 
parent materials containing black schists. 
Additionally, AS soils can be found under 
forest vegetation, both in mineral soil 
forests and on peatlands (Nieminen et al. 
2016). Wetland forestry typically involves 
ditching, which exposes sulfidic material 
to oxidation and causes acidification in 
the recipient waters. Only a few forest AS 
soils have been documented in scientific 
papers (Lindroos et al., 2007; Saarinen et 
al., 2013), but other examples can be 
found in reports (Weppling et al., 1999; 
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Fig. 4. Three AS soils with sulfidic material at different depths produce the discharge water 
with different pH values. The subsurface drainage pipes (Dr pipe) are within the sulfidic 
materiaI in Liminka, at the top of the sulfidic material in Mustasaari, and well above the 
sulfidic material in Ilmajoki. Data sources: Joukainen and Yli-Halla, 2003 (Ilmajoki and 
Mustasaari); Palko, 1988 (Liminka).
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Auri, 2012). Furthermore, AS soils can 
occur in sandy environments (Mattbäck 
et al., 2022) where even low concentra-
tion of sulfide can reduce the pH below 4 
due to a negligible buffer capacity. 
However, the loading potential of these 
soils is low, compared to finer-grained AS 
soils. 

Extensive mapping of AS soils  
was recently carried out in Finland  
(GTK, 2020) and an estimate of about  
10,000 km2 for AS soils across all land uses 
will soon be presented (Edén et al., 2022). 
This estimate includes soils where sulfidic 
material can be found within three meters 
of the soil surface. Earlier, it was estimated 
that the agricultural soils containing 
sulfidic material or a pH<4.0 within  
150 cm of the soil surface cover approxi-
mately 1300 km2 in Finland (Yli-Halla et 
al., 1999). Indeed, the estimates presented 
for the apparent area of AS soils are highly 
dependent on 1) the soil depth under 
investigation, 2) land uses accounted for,  
3) the criteria for AS soil materials, and  
4) the pH requirements.

For agricultural land use, sulfidic 
materials occurring at the depths deeper 
than two meters may be irrelevant because 
these layers are almost always water-
logged and thus produce negligible acid 
loading. International soil classification 
systems, such as the U.S. Soil Taxonomy 
(Soil Survey Staff, 2014) uses sulfidic 
material as a criterion for classification 
only when it occurs within 150 cm of soil 
surface because it is not considered to be 
harmful at greater depths. In the World 
Reference Base for Soil Resources (IUSS 
Working Group WRB, 2014), the respec-
tive depth is 200 cm. However, for 
engineering purposes – where the soil is 
often disturbed and allowed to oxidize at 

greater depths – the presence of the 
sulfidic material deep in the soil bears an 
environmental risk. 

4. Environmental 
consequences

Sulfidic material oxidizes in the summer 
when the groundwater level decreases. 
During the summer months, there is 
typically no discharge, meaning that the 
soluble products of oxidation do not leach 
out. The peaks of the acidity and solutes 
occur in the autumn, after rainwater has 
saturated the soil and subsurface pipes 
have started to convey excess water into 
the watercourses. Discharge decreases in 
the winter and then increases again in the 
spring, giving rise to the hazards of acidity. 
Sulfate does not cause low pH, but given 
that it originates from the same reaction as 
the acidity, high SO42-–S concentrations 
usually correlate with low pH in AS soil 
areas. 

In rivers that receive much of their 
water from AS soil areas there is a risk that 
the river pH will decrease to levels that are 
harmful to aquatic biota. Aluminum 
dissolved by the acidity is considered the 
most harmful component because it 
precipitates in the gills of fish, causing 
suffocation. Fish kills are indeed the 
ultimate manifestation of acidic discharge 
and they have been reported mostly on the 
western coast of Finland, particularly in 
autumns after dry summers. They allow an 
intensive oxidation of the sulfidic material 
and subsequent leaching of acidity. In less 
severe cases where adult fish survive, the 
fish reproduction is still hampered, 
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reducing the fish stock and changing the 
species distribution (Hudd & Leskelä, 
1998; Sutela & Vehanen, 2017).  

When the subsurface pipe drainage of 
the agricultural land extended to AS soil 
areas on the western coast of Finland, the 
episodes of strong acidification began to 
occur more frequently. This occurred 
because the sulfidic subsoil is more 
intensively oxidized in a pipe-drained soil, 
as compared with the earlier drainage, 
which relied on the shallow open ditches. 
Major fish kills occurred in Finland in the 
early 1970s, and the most recent major 
occurrences were in the winter period 
2006 – 2007 (Sutela et al., 2012). Land use 
activities resulting in the deterioration of 
the ecosystem have been increasing since 
1600s (Hildén & Rapport, 1993), and the 
first recorded fish kill in Finland took 
place in 1843 (Åström et al., 2005). Thus, 
fish kills have occurred already before 
agricultural fields were intensively drained. 
Occasional fish kills have also been 
reported in inland watercourses induced 
by peat mining in black schist areas 
(Wichmann & Ovaskainen, 2012). Sulfidic 
material dredged and stockpiled on land 
can also cause local acidification (Johnson 
et al., 2022).

The dissolution of metals other than 
Al has also been noted to have a harmful 
environmental impact. While AS soils are 
not richer in heavy metals than other soils, 
the acidity promotes the solubility of the 
heavy metals (Sohlenius & Öborn, 2004). 
The pore water of AS soil has been shown 
to have high concentrations of heavy 
metals (e.g., zinc) (Lindroos et al., 2007; 
Yli-Halla et al., 2017). In Finland, metal 
leakage from AS soils is greater than that 
of the country’s entire industry (Sund-
ström et al., 2002). However, crops grown 

in AS soils are not enriched with these 
metals (Fältmarsch et al., 2010) because 
their roots do not enter the horizons where 
the metals are dissolved.

5. Nitrogen content of 
the acid sulfate soils
More than thirty years ago (Rekolainen, 
1989), the monitoring of the river water 
quality revealed that certain rivers in AS 
soil areas in western Finland exhibited 
unusually high concentrations of nitrogen 
(N). Indeed, AS soils have been found to 
contain large stocks of mineral N com-
pared to other soils (Paasonen-Kivekäs & 
Yli-Halla, 2005; Šimek et al., 2011; 
Yli-Halla et al., 2022). More specifically, 
this N is mostly located in the subsoil in 
the form of NH4+-N (Fig. 5). Over a 
seven-year period, the monitoring of 
mineral AS soil in western Finland 
revealed that an average of 55 kg N ha-1 
was leached annually through the subsur-
face drainage system (Yli-Halla et al, 
2020), whereas the national average 
leached from agricultural land is approxi-
mately 15 kg N ha-1. In this particular field, 
the N contained in the harvested crop plus 
the N contained in the discharge made up 
148% of the N fertilization. Furthermore, 
this field produced large emissions of N to 
the atmosphere, indicating a substantial 
pool of mobile N in the soil. However, the 
origin, behavior, and availability to plants 
of this large N stock is not entirely clear. 
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6. Mitigation 
activities

The methods to solve the agricultural 
problems posed by AS soils include 
drainage and liming, and these recommen-
dations were developed in the early 
decades of research on these soils. Since 
the 1970s, nearly all research on AS soils in 
Finland has concentrated on their environ-
mental effects. National competence 
accross different disciplines has gradually 
been built up to understand AS soil 
processes in the Finnish environment and 
establish relevant analytical and field 
methods to identify these soils. In particu-
lar, AS soil mapping is the basis for all 
mitigation activities. Large-scale maps of 
AS soils have been produced in small areas 
since the 1970s (e.g., Erviö, 1975; Palko et 
al., 1985; Weppling et al., 1999), and the 
national small-scale (1:250,000) map 
(GTK, 2020) provides guidance regarding 
where more accurate surveys are needed. 

Mitigation activities have been carried 
out in all sectors of land use, most exten-

sively on agricultural land, and the 
recommendations have been compiled by 
the Ministry of Agriculture and Forestry 
and the Ministry of Environment (2012). 
Liming of the surface soil (Palko & 
Weppling, 1994; Åström et al., 2007) has 
been shown to have little impact on the 
acidity of the subsoil and drainage water. 
Lime filter drainage has shown a marked 
initial effect (Bärlund et al., 2005), albeit 
with a relatively short duration. Recently, 
liming of the subsoil by using ultrafine-
grained (2.5-µm) limestone through the 
drainage system has been tested (Stén et 
al., 2019). Liming of river or ditch water 
has also been reviewed (Heikkinen & 
Alasaarela, 1988), and recommended for 
peat extraction areas (Hadzic et al., 2014). 

Preventing further oxidation of 
sulfidic material by maintaining a high 
groundwater level is likely the most 
sustainable way of managing AS soils. In 
agricultural land, this can be facilitated by 
controlling drainage and pumping 
additional water into the drainage system 
(subirrigation) to prevent lowering of the 
groundwater level during the dry summer 
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months (Österholm et al., 2015). These 
methods of water management are shown 
to shorten the period during which the 
sulfidic subsoil is subjected to oxidation, 
with a slight decreasing impact on the 
discharge acidity (Virtanen et al., 2016). 
Stopping drainage of the most severe AS 
soils, which would practically end the 
agricultural land use, may seem effective 
from an acidification perspective. In 
principle, elevation of the water table into 
oxidized horizons should reverse the 
system and reintroduce reducing condi-
tions, consuming acidity. This method 
appears to work in warm climates (e.g., 
Karimian et al., 2018), but the low temper-
atures in Finland makes this approach 
questionable. In cool soils, Fe3+ (abundant 
in the oxidized zone) is reduced to soluble 
Fe2+. However, due to low temperatures 
and consequentially low microbial activity, 
the redox potential is not sufficiently 
lowered to allow the conversion of 
SO42-–S to S2-. Therefore, instead of FeS 
precipitation, SO42-–S and Fe2+ are leached 
out of the soil. Upon further oxidation of 
Fe2+ in the watercourse, acidity is regener-
ated, thus actually transported from the 
soil to the watercourses (Virtanen et al., 
2014). Thus, continued cultivation, 
controlled drainage, and subirrigation are 

currently the best methods of managing 
agricultural AS soils. 

Recently, AS soils have emerged as an 
issue in forest management and engineer-
ing projects involving drainage and soil 
disturbance. Creating awareness in these 
areas is essential because the AS soils have 
long been solely regarded as a problem of 
agricultural land use. A guidebook for 
forestry in AS soils (Nieminen et al., 2016) 
encourages the identification of AS soils 
and recommends a shallow ditching that 
does not extend to the sulfidic subsoil. 
Furthermore, guidelines for engineering 
projects in AS soils have recently been 
launched (Autiola et al., 2022) involving 
instructions for sampling and methods of 
treating sulfidic soil material. 

All land use involving the disturbance 
and oxidation of sulfidic soil material is 
conducive to the loading of acidity and 
dissolved metals into watercourses. There 
is no cheap or easy solution for the proper 
management of AS soils. While the 
principal processes and consequent effects 
of sulfidic soil materials on soil, water, and 
construction materials are largely under-
stood, much work remains in increasing 
awareness and developing practical 
solutions for the sustainable use of AS 
soils.
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