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Abstract
Cellular energy is produced in mitochondria  
by respiratory enzymes in a process called  
oxidative phosphorylation. Respiratory 
enzymes are large proteins embedded in the 
inner mitochondrial membrane which can occur 
either as individual enzymes or organize into 
larger assemblies called super- and mega-
complexes. Originally, supercomplex organiza-
tion was not generally accepted, but nowadays, 
their existence is clear. However, the functional 
aspects are still in the dark. In this overview, 
we will briefly touch upon the history of super-
complex research, the variation of the super-
complex compositions and shed light on the 
challenges of studying their functional aspects.
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1. Introduction

Every cell in our bodies is a hub of activity 
fueled by cellular respiration. When your 
eyes are browsing through this short 
overview, your mitochondria are busy 
producing adenosine triphosphate (ATP) 
– the energy currency of the cell. In 
general, it is widely known that mitochon-
dria are the powerhouses of the cells, but 
the details of the tiny molecular machines 
that carry out the processes are less known. 
These molecular machines, the respiratory 
enzymes, are a class of transmembrane 
proteins that participate in cellular 
respiration, more specifically the mito-
chondrial energy conversion. 

Cell respiration is the series of 
chemical reactions in which nutrients, like 
glucose, are broken down to produce ATP. 
There are many metabolic pathways, both 
aerobic and anaerobic, all of which contain 
a series of chemical reactions but in this 
overview, we will focus on oxidative 
phosphorylation (OXPHOS), the culmina-
tion of cell respiration. OXPHOS com-
prises the electron transport chain (ETC) 
which generates proton electrochemical 
gradient across the inner mitochondrial 
membrane (alternatively bacterial mem-
brane in prokaryotes lacking mitochon-
dria) by oxidizing NADH obtained from 
Krebs cycle. The proton electrochemical 
gradient is required by F1Fo-ATP synthase 
to produce ATP by phosphorylating ADP.

The ETC enzymes are called respira-
tory complexes I-IV; complex I (CI) or 
NADH:ubiquinone (UQ) oxidoreductase, 
complex II (CII) or succinate:UQ oxidore-
ductase, complex III (CIII) or cytochrome 
bc1, and complex IV (CIV) or cytochrome c 
oxidase. Ubiquinone (UQ) and 
cytochrome c (cyt c) are mobile electron 

carriers crucial for OXPHOS located in the 
membrane and the external membrane 
surface, respectively. Complex I is the first 
and largest enzyme in ETC. It receives 
electrons from NADH and transfers them 
to UQ, while pumping protons across the 
inner mitochondrial membrane contribut-
ing to the proton gradient. Complex II 
does not directly contribute to the proton 
gradient, but it reduces UQ thereby having 
an indirect contribution. Complex III 
transfers electrons from UQ to cyt c while 
also pumping protons. Complex IV is the 
final step in the ETC, where electrons are 
transferred to oxygen, the final electron 
acceptor, producing water and pumping 
more protons to maintain the gradient. See 
Figure 1 for a schematic of the process. 

The idea of a larger entities of 
respiratory complexes was proposed 
already decades ago (Chance et al., 1963; 
Keilin & Hartree, 1947). Roughly at the 
same time with these suggestions, individ-
ual functioning complexes were obtained 
(Hatefi et al., 1962). Therefore, the 
discussion of the organization of the ETC 
complexes in the membrane was initiated 
early on. On the absolute extreme ends of 
the scale, the two opposite theories for 
ETC complexes are the so called “fluid” 
and “solid” state models (Milenkovic et al., 
2017). The “solid” state model considers 
the ETC complexes gathering into single 
units with coenzyme Q.  On the contrary, 
the “fluid” model proposes that the ETC 
complexes act separately, with electron 
carriers like ubiquinone and cytochrome c 
shuttling electrons between them (Hack-
enbrock et al., 1986). In the “fluid” state 
model, the reaction catalysis is based on 
diffusion and random collisions of the 
enzymes and carriers in the membrane 
gave the name random collision model 
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(Hackenbrock et al., 1986). In fact, the 
random collision model became the 
accepted standard model for ETC until 
blue native polyacrylamide gel electropho-
resis (BN-PAGE) analysis, which allowed 
researchers to isolate and visualize protein 
complexes in their native state, was 
developed. The analysis revealed the 
existence of large, stable assemblies of 
respiratory complexes in mammalian and 
yeast respiratory chains, later identified 
supercomplexes (SC) (Schagger & Pfeiffer, 
2000). These findings challenged the 
traditional fluid model and suggested that 
the respiratory complexes might work 
together in a more organized manner than 
previously envisaged. It is noteworthy, that 
the existence of the larger entities does not 
remove the ability of the individual ETC 
complexes from catalyzing the reactions as 
well. While approximately 85-100 % of CI 
is estimated to be found in SC, the 
corresponding estimates are only 55-65 % 
for CIII and 15-25 % for CIV (Greggio et 

al., 2017; Schagger & Pfeiffer, 2001). The 
development of more and more advanced 
imaging techniques allowed the visualiza-
tion of these SCs in unprecedented detail, 
up to the atomistic detail as of today.

2. Composition and 
architecture
The three main mammalian SC composi-
tions in order of declining molecular mass 
are CI1CIII2CIV1 (~1.7 MDa), CI1CIII2 (~1.5 
MDa) and CIII2CIV1 (~0.7 MDa) (Letts & 
Sazanov, 2017) (See panels A-C in Figure 
2). The CI1CIII2CIV1 composition is 
special as it is the one most observed in 
BN-PAGE analyses and has been named 
the respirasome. The respirasome is 
considered a “base unit” of respiratory SCs 
and in vitro, it can carry out the entire 
NADH to O2 oxidoreduction as presented 
linearly in Figure 1. 

Figure 1. Linear view of the respiratory chain. H+ represent proton and e- electron. The figure 
was created in BioRender.
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While 2D projections and 3D maps of 
the SCs were published starting from mid 
2000s (Althoff et al., 2011; Dudkina et al., 
2005; Dudkina et al., 2011; Schafer et al., 
2007; Schafer et al., 2006), it is noteworthy 
that the resolution was only around ~20 Å 
which means that atomistic details were 
not resolved. The first atomistic mamma-
lian respirasome structure was published 
by Letts, Fiedorczuk and Sazanov from 
ovine mitochondria in 2016 (Letts et al., 
2016). While there are reports of bacterial 
SCs, the research was heavily concentrated 
on mammalian respirasomes, and since 
high-resolution structures require a 
template structure, the lack of the atomis-
tic mammalian CI structure until 2016 
(Fiedorczuk et al., 2016; Zhu et al., 2016) 
was a bottleneck for resolving the respiras-
ome structure as well. Therefore, the first 
respirasome structure was quickly followed 
by two others, a respirasome from porcine 
(Gu et al., 2016; Wu et al., 2016) and 
bovine (Sousa et al., 2016). In all the above 
mammalian structures, the overall architec-
ture is similar with CI curved around the 
CIII dimer and CIV located at the anti-
porter end of the CI membrane arm. See 
Figure 2.

In addition to the respirasome, there 
are also larger respiratory assemblies. These 
assemblies are often referred to as mega-
complexes. For example, the human 
mitochondrial megacomplex structure was 
published in 2017 in CI2CIII2CIV2 compo-
sition (Guo et al., 2017). The architecture 
shares similarity with the respirasome with 
CI curving around CIII, but in the mega-
complex two CI’s surround the CIII from 
opposite sides almost like a ring around it. 
Recently, multiple megacomplex assem-
blies were observed in porcine mitochon-
dria in situ (Zheng et al., 2024). These 

include CI1CIII2CIV1, CI1CIII2CIV2, 
CI2CIII2CIV2 and CI2CIII4CIV2 truly 
highlighting the variance of the mitochon-
drial super/megacomplexes.

Notably, CII is not a part of the SC 
compositions presented above. A recent 
study on ciliate protist Tetrahymena 
thermophila revealed a unique SC compo-
sition CI1CII1CIII1CIV2 where, for the first 
time, CII was observed as a part of a SC. 
Considering it has been suggested that CII 
also interacts with the proton pumping 
respiratory complexes, the result does not 
contradict earlier findings (Acin-Perez et 
al., 2008; Jiang et al., 2020; Lapuente-Brun 
et al., 2013; Schon & Dencher, 2009; Zhou 
et al., 2022). CII was also hypothesized as a 
part of the human megacomplex but not 
observed (Guo et al., 2017). While there 
are some similarities between the two 
assemblies, they are so different that direct 
comparison of the CII location is not 
straightforward.

3. Functional aspects

Since SCs have been observed in many 
compositions and architectures, what are 
their functional implications? Thorough 
lists and analyses can be found for example 
in reviews by Letts & Sazanov and Milenk-
ovic et al. (Letts & Sazanov, 2017; Milenk-
ovic et al., 2017) but in this small overview, 
we will only briefly cover a few of the 
different aspects and more detailed 
consideration is left to the reader.

The most logical explanation for the 
existence of SCs would be substrate 
channeling since the structures bring the 
enzymes close together with possibility to 
even have separate substrate pools from 
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the bulk pool in the membrane. This 
theory has evidence both for and against it 
(Althoff et al., 2011; Dudkina et al., 2011; 
Sousa et al., 2016). Eventually it has been 
rendered as rather unlikely (Letts & 
Sazanov, 2017; Milenkovic et al., 2017). 
For example, the substrate channeling has 
been proposed based on flux-control 
analysis (Bianchi et al., 2004) but there are 
issues with reproducibility of the results 

and the results are highly dependent on 
the choice of detergent (Blaza et al., 2014). 
Additional evidence against separate 
substrate pools come from diffusion 
experiments of the substrates (Gupte et al., 
1984; Trouillard et al., 2011). Additionally, 
restricting the movement of the substrates 
would require protein structures that 
could “trap” substrates, but these have not 
been observed. 

Figure 2. Examples of supercomplex (A-C) and megacomplex (D-G) architectures. In all 
panels, CI is shown in maroon, CII in lime green, CIII in pale yellow and CIV in lavender. The 
PDBids of the structures used are: (A) 5j4z (Letts et al., 2016) (B) 6qbx (Letts et al., 2019) (C) 
7o3c (Vercellino & Sazanov, 2021) (D) 5xti (Guo et al., 2017)(E) 8b6f, 8b6g, 8b6h, 8b6j 
(Muhleip et al., 2023) (F)8ugj (G) 8ugr (Zheng et al., 2024).
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Reduction of reactive oxygen species 
(ROS) production has been suggested as 
one possible function or benefit of SC 
formation. ROS are unfortunate side 
products in OXPHOS – small molecules 
that contain oxygen and are highly reactive 
in cells potentially in a destructive manner. 
They are primarily produced by CI and 
CIII (Murphy, 2009). However, the 
experimental setups to measure ROS 
production are challenging in terms of 
designing a setup that is not dependent on 
factors such as other substrate or enzyme 
concentrations or the choice detergents 
since multiple ROS production sites are 
present in both CI and CIII (Maranzana et 
al., 2013; Sarewicz & Osyczka, 2015). 

Since there are different SC composi-
tions, perhaps their formation and 
disassembly are per-requirement processes. 
In fact, it has been suggested that exercise 
increases the amount of SCs in muscle 
tissue (Greggio et al., 2017). As per 
requirements of the tissue change in terms 
of metabolism, forming or breaking down 
SCs could be a regulatory mechanism for 
respiration. However, “correlation does not 
equate to causation” (Milenkovic et al., 
2017). Cell respiration is a complicated 
process related to other cell functions 
making it difficult to draw reliable 
conclusions of a single phenomenon alone.

The respiratory chain is embedded in 
a phospholipid membrane raising the 
question about the effect of SCs on the 
membrane. Specifically for the mammalian 
systems, the inner mitochondrial mem-
brane has protrusions called cristae thereby 
having highly curved regions. The tradi-
tional view has been that the ATP synthase 
dimers (CV) form rows along the curved 
edges and the ETC enzymes reside in the 
flatter membrane regions (Blum et al., 

2019; Davies et al., 2012; Davies et al., 
2011; Muhleip et al., 2017). However, this 
view was recently challenged by Mühleip 
et al. (Muhleip et al., 2023). Ciliate 
supercomplex CI1CII1CIII1CIV2 was 
observed in highly curved architecture 
shaping tubular cristae of ~40 nm diame-
ter. Notably, the cristae shape is dependent 
on the organism and ciliates specifically 
harbor the tubular ones. Nevertheless, this 
was the first observation of the SC 
formation shaping the bioenergetic 
membrane. Observations of mammalian 
SCs do indicate membrane curving, but 
the scales are totally different to the 
bending observed in ciliate SC (Zheng et 
al., 2024).

There is clear structural evidence that 
SCs exist, but their functional implications 
are not yet resolved. Experimental setups 
on respiratory enzymes are complicated, 
and as can be seen in the examples above, 
creating a setup to answer a specific 
research question in an isolated manner is 
not simple.

4. Computational 
research of 
supercomplexes
 
In addition to experimental research, there 
is some available computational research 
on the SCs as well. As the experimental 
setups suffer from complexity, the compu-
tational ones suffer from size.

One of the most popular computa-
tional methods in protein research is 
molecular dynamics (MD) simulations 
which are also widely used for studying the 
respiratory enzymes. However, the ability 
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to study the atomistic details of SCs was 
not properly available until the first 
atomistic structures of the respirasome in 
2016, because protein structures are 
essential in constructing simulation 
systems. In addition to the lack of struc-
tures, computational studies of large 
systems, as the SCs encompass multiple 
proteins with hundreds of subunits, suffer 
from the computational cost of the 
calculations. To lower the cost, different 
levels of coarse-graining may be used 
depending on the research question.  
For example, the ciliate supercomplex  
CI1CII1CIII1CIV2 embedded in a mem-
brane was recently studied using coarse-
grained MD simulations with Martini3 
forcefield (Muhleip et al., 2023). Similarly, 
respirasome from Euglena gracilis was 
computationally studied using the same 
forcefield (He et al., 2024). Although in 
both cases coarse-graining was used to limit 
the computational load, the simulation 
systems still comprised millions of beads. 

Utilizing computational methods to 
complement in the experimental research 

will positively impact the bioenergetic field 
in terms of shedding light on the interac-
tions between the individual enzymes and 
their substrates and the environment they 
are in. Both method types have their pros 
and cons but together they form a power-
ful toolset.

5. Final remarks 

Respiratory supercomplexes are a fascinat-
ing extension of the studies on individual 
respiratory complexes. Their significance 
in biology, medicine and physiology is 
clear but there are still many mysteries and 
questions about them. Leaps in experi-
mental, structural and computational 
methods have already been a significant 
impact on the research as we saw with 
BN-PAGE analyses and the atomistic 
structures. Who knows if the next big 
breakthrough in methodology will finally 
reveal the secrets of supercomplexes?
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