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The dominance of cereal-based rotations in Finnish agriculture contributes to adverse environmental impacts, and 
shifting towards diversified cropping systems has been minimal. Since economic viability and profit motives are 
strong among farmers, there is a need for analysis tools investigating profitability of agronomically feasible, diver-
sified cropping systems and rotations. While there is consensus on pre-crop effects, their impact is unclear and of-
ten overlooked in decision-making. We integrate recent empirically estimated pre-crop values into farm models 
to assess their influence on land use and farm economy and use dynamic optimization to solve the economically 
optimal crop rotations. The results show that including empirically estimated pre-crop values improves on subjec-
tive expert estimates of pre-crop effects and can eliminate the need for additional rotational constraints. Utilizing 
pre-crop effects consistently over time may lead to significant economic gains. This approach can contribute to sus-
tainable agriculture by encouraging diversification and resilience, even amidst changing climates or novel crops.

Key words: farm management, diversification, dynamic optimization, land use, crop sequencing, agricultural economics 
 

Introduction
Agriculture contributes significantly to greenhouse gas (GHG) emissions globally, as well as to the loss of landscape 
diversity, natural habitats, species diversity, and to damages to soil and water ecosystems (Campbell et al. 2017, 
IPCC 2019). Several adverse environmental impacts of agriculture, such as depletion of soil nutrients and reduc-
ing the risk caused by pests and diseases, are attributable to monotonous crop sequencing and land use (Kirkeg-
aard et al. 2008, Lin 2011, Rosa-Schleich et al. 2019). Diversification of crop rotations, by utilizing a high number 
of different types of crops, likely provides multiple benefits by reducing these impacts (Kremen and Miles 2012, 
Lechenet et al. 2014, Rosa-Schleich et al. 2019).

The concept of crop rotation, i.e. system of raising crops in a regular order one after the other on the same field 
parcel, is dynamic rather than fixed (Peltonen-Sainio et al. 2020), and may vary a lot on how many different crops 
are cultivated. Diversification of crop rotations has been included in the Common Agricultural Policy (CAP) objec-
tives since 2000 as part of the voluntary agricultural environmental schemes. Despite the past efforts to use of 
more diverse crop choices and rotations, impacts on biodiversity have been minor at best in European countries 
(Mills et al. 2020, Gütschow et al. 2021). In Finland, monotonous crop rotations and the strong dominance of only 
a few major cereal species (Peltonen-Sainio et al. 2017) as well as soil degradation caused by soil compaction and 
reduction in carbon stocks (Heikkinen et al. 2013) have probably contributed to stagnating yields and high yield 
gaps (Peltonen-Sainio et al. 2015, Schils et al. 2018). On the other hand, this means that there is still lots of un-
exploited potential to diversify agricultural land use (Peltonen-Sainio et al. 2016, Peltonen-Sainio and Jauhiainen 
2019) and to benefit from the various ecosystem services that such transition may provide in the short and long 
run (EASAC 2022).

Since economic viability and profit motives are strong among farmers in the context of sustainable land use and 
production choices (e.g., Gütschow et al. 2021), there is a need for analysis tools investigating the profitability 
of agronomically feasible, diversified cropping systems and rotations. While static optimization approaches have 
been applied in farm management (Galán-Martín et al. 2015, Monjardino et al. 2022), dynamic whole-farm mod-
elling, including comprehensive land use and nutrient-use descriptions, has been considered important when an-
alyzing improvements in sustainability of farming systems (Berntsen et al. 2003, Dueri et al. 2007, Chardon et al. 
2012). These dynamic cropping system models have been utilized in evaluating effects of different rotations on 
soil nitrogen balances and resulting yield impacts as well as climate change impacts on farming systems (Dueri et. 
al. 2007, Schönhart et al. 2011, 2018). 
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There is a consensus about pre-crop effects, i.e., that the preceding crops in rotations have various impacts on the 
following crop and its yield, but the effects have been mostly unknown and, hence, ignored in farmer’s decision 
making (Kirkegaard et al. 2008). There is a consensus that monotonous crop sequencing causes yield losses in a 
short term for example due to increased pest and disease risks, but also in the long-term as arable intensification 
with monocultures has resulted in deterioration of soils due to loss of organic matter, erosion, compaction, and 
contamination with pesticides (Stoate et al. 2001, Baldwin 2006, Bennett et al. 2012). Earlier, pre-crop effects have 
been studied in field trials (e.g. Sieling and Christen 2015, Babublicová 2016), and according to these studies, yield 
losses can be avoided, and yields can even be improved by using more diverse crop rotations. 

Although farm scale crop rotation decisions have been analysed a lot (e.g., Maynard et al. 1997, Hennessy 2006, 
Meyer-Aurich et al. 2006, Dury et al. 2012), only a small volume of literature has tried to incorporate pre-crop 
effects in optimization problems or simulation models. For example, Guinet et al. (2020) aimed to quantify and 
understand the effect of grain legume compared to cereal pre-crops using an agronomic model (STICS) to calcu-
late nitrogen mineralization from pre-crop residues and nitrogen leaching between pre-crop harvest and wheat 
harvest. In addition, Hoffman et al. (2018) utilized a widely used agro-ecosystem model APSIM (Holzworth et al. 
2014) to examine nitrogen management in crop rotations after the break-up of grassland. Especially economic 
modelling of explicit dynamics and decision making of crop rotation at farm and field parcel scale, over several 
years, remain few. 

Several papers studying crop rotation with dynamic optimization as well as farm management modelling assume 
yield effects based on monotonous crop sequencing and diverse crop rotations (Liu et al. 2016, Purola et al. 2018, 
Purola and Lehtonen 2020). However, without sound empirical basis for the pre-crop effects there might be a 
need to have additional constraints in models to prevent solutions considered unrealistic or infeasible. Recently, 
Peltonen-Sainio et al. (2019) introduced a novel method for estimation of the pre-crop values based on Sentinel 2 
satellite data on 238 290 field parcels on Finnish farms. Thereby, the pre-crop impacts estimated comprehensive-
ly represent the current crop production systems and conditions in the prime crop production regions of Finland.

The aim of this paper is to show what is the value and contribution of pre-crop effects on farm management and 
economy. Pre-crop effects provide more information to a farmer than the expert estimates on monocultural yield 
losses and thus one may expect significant changes in farm management and economy. We integrate the pre-
crop values in the farm model and analyze the resulting differences in the land use and farm economy, i.e., how 
farm management is changed due to increased information, and how a farmer may optimally utilize the novel 
understanding on the pre-crop effects when designing crop rotations. In this paper, we extend an earlier pub-
lished dynamic optimization farm model (Purola and Lehtonen 2020) with empirically estimated pre-crop values 
(Peltonen-Sainio et al. 2019). We show how using empirically estimated pre-crop values in dynamic farm model-
ling adds more information and thus eliminates the need for subjective expert estimates of monocultural yield 
losses, other subjective pre-crop values, or any additional constraints. The results show how and to what extent a 
farmer may benefit from utilizing the pre-crop value information in farm management in the long run. Eventually, 
using pre-crop values may lead to more realistic and valuable results in farmers’ decision making.

Model and methods

Utilizing dynamic optimization framework allows us to combine crop production and farm economics with var-
ious technical data and response functions, such as crop yield response to nitrogen levels, effects of liming and 
fungicide treatments. Parameters of the input use effects on crop yields are based on empirical estimations. Ac-
counting for the effects of crop rotation on crop yields, simultaneously with input use effects, is an important 
economic issue at the farm level. 

We maximize net present value with 6% interest rate over 30-year time horizon. 6% interest rate is close to stock 
markets annual yield during the last 100 years (Pörssisäätiö 2023), and 30-year time span is of a relevant length 
in terms of farmers’ careers. It is also long enough to show long-term effects.

Denoting the interest rate with r¸and the discount factor with b = 1/(1+r), the optimization problem is as follows:
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subject to

           (2)

            
(3)

              ,
          (4)

where Atpi is land allocation of crop i at time t on parcel p, Ni is nitrogen fertilization of crop i, Ltp is the use of lim-
ing at time t on field parcel p, and Ftp is the fungicide use at time t on parcel p. μi is the unit price of crop i, Ytpi the 
yield of crop i on parcel p at time t, and Si depicts the agricultural subsidies for crop i. θ  denotes the risk aversion 
of the farmer, and X the covariance matrix of crop specific gross margins. Ctpi denotes the costs of crop i at time t 
on parcel p where Vi and Gp denote the variable and logistic costs, cL, cF and cN the costs of liming, fungicide, and 
nitrogen fertilization respectively.

îY  denotes the baseline level of yields for crop i, αi the crop-specific effects of nitrogen use (N), liming (L) and fun-
gicide (F) on yield on parcel p at time t, βij the pre-crop value (or yield-effects in cases NP and NP+LC) of crop j on 
crop i, and γi the yield losses from monoculture. Due to different time scales (1 year vs. 5 years), yield or pre-crop 
effects and monoculture losses are separate coefficients. Finally, T is the length of the time horizon, P the number 
of parcels, and n the total number of crops. 

The optimization problem presented by eqs. 1–4 was solved using nonlinear programming using the CONOPT 3 
solver of the General Algebraic Modelling System (GAMS) software. Typical time to solve the problem is under 
10 seconds.

For numerical optimization we utilized a dynamic farm-level model DEMCROP, which was used to simulate farm 
economics and management of a representative 10-parcel farm located in Southwestern Finland. Farms in the 
region have average size of 59 hectares, focusing on cereal-based crop rotation with about 70% of farm-area allo-
cated on cereals (Peltonen-Sainio and Jauhiainen 2019, OSF 2021). The model has been applied before in various 
settings in Lehtonen et al. (2014), Liu et al. (2016), Purola et al. (2018) and Purola and Lehtonen (2020). 

In the DEMCROP-model, farmer’s management decisions include land-use management decision for all field par-
cels, liming, fertilization, and fungicide use. Crop yield is dependent on the use of nitrogen fertilizer and fungicides 
at the current year, as well as on the soil pH. Nitrogen fertilization decision is based on fertilizer and crop prices 
through non-nitrogen response function of crop-specific yields: nitrogen fertilization is increased until the value 
of marginal yield gain from fertilizer is equal to the price of fertilizer. Nitrogen fertilization, considered necessary 
for all crops except for fallow and nature managed field (NMF), is the same for each crop in all field parcels, and 
each year is independent, i.e. crop selection or fertilization use has no effect on the crop selection or fertilization 
need next year. However, fungicide use is not a necessity but is determined based on fungicide response function 
for wheat and barley in all field parcels separately. Crop yields are also dependent on soil pH, which in turn can 
be controlled via liming activity. The effect of soil pH on yield is calculated by multiplying the difference between 
the soil pH and crop specific optimal pH (Table A1) by 0.12 (Purola et al. 2018). The level of liming and fungicide 
use activities, as well as crop choice, are optimized for each field parcel. We set risk aversion coefficient theta to 
0.000001 based on Purola and Lehtonen (2020). This small risk-aversion parameter means low risk aversion and 
is compatible with the literature, which suggests that farmers in developed countries are typically relatively little 
risk averse (Raskin and Cochran 1986) though some risk behavior can be observed. Nevertheless, risk aversion 
plays little role in this study.

Crop yields are also dependent on land use of the previous year at each field parcel, based on the pre-crop effect. 
The model also considers greenhouse gas emissions for different land-use using the calculation scheme also used 
by Purola and Lehtonen (2022) based on the approach of the official national GHG inventory (Statistics Finland 
2021) compatible to the IPCC methodology and coefficients. 

In this paper the model is extended to account for the effect of the preceding crop on yields of crops sown at sub-
sequent years, using empirically estimated pre-crop values (Peltonen-Sainio et al. 2019). In Peltonen-Sainio et al. 
(2019) values are presented over two years, and here we utilize the mean of the values. In this paper, we use six 
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crop options (spring and winter wheat, feed and malting barley, oats, and rapeseed), as well as two forms of set-
aside (fallow, nature managed field [NMF]). These are the main cultivars in the region, accounting for over 80% 
of total cultivated area between 2010 and 2020 (OSF 2021). Rapeseed was found to be the most beneficial pre-
crop for all crops followed by barley. Winter wheat was found more beneficial before barley than spring wheat 
while oats appeared to decrease barley yields if grown as pre-crop. Nature management fields can benefit winter 
wheat and rapeseed as a following crop, while they can lead to yield reduction when followed by barley or oats. 
Similarly, fallow seems to favor the yields of winter and spring wheat as well as rapeseed if they are following. 

There is one unit of farmland available that is split into 10 equally large and shaped parcels. The distance of the 
parcels to the farm center varies between 0 and 7 km. Distance of each parcel affects the logistic costs related to 
that parcel (Table A2). All parcels are assumed to be on mineral soil. Initial yields ( îY ) for each are calculated as 
average yields from the region between 2000 and 2018 from official farm statistics (OFS 2021). Pre-crop values 
(βij), i.e. the effects of preceding crops on the yield of the next crop grown at the same parcel of land, are based on 
Peltonen-Sainio et al. (2019), and are presented in Table 1. Yield penalties for monoculture cultivation (γi), calculat-
ed over 5 years, were set to –5% p.a. for cereals and –20% p.a. for rapeseed for case Pre-crop. These yield penal-
ties based on expert assessment are necessary since the pre-crop effects of Peltonen-Sainio et al. (2019) consider 
only one-year pre-crop effects, while it is known that long-term monocultures do result in deterioration of soils. 

Especially rapeseed-specific pests and diseases may stay in soil even 4–5 years and it is not sufficient to consid-
er only one-year effects of oilseed monocultures. Hence the monoculture-driven yield losses over 5 years based 
on expert estimates also used by Purola and Lehtonen (2020) are used in the model and presented in Table 2.  

Table 1. Pre-crop values for each crop combination, applied in case Pre-crop, based on Peltonen-Sainio et al. (2019). Positive 
values mean yield gains, negative yield losses, and zero no effect.

Preceding crop

Current crop Spring 
wheat

Winter 
wheat

Feed 
barley

Malting 
barley

Spring 
oats Rapeseed Fallow Nature managed 

field (NMF)

Spring wheat 0.0 % 3.0 % 6.8 % 6.8 % 0.1 % 7.5 % 4.4 % 0.5 %

Winter wheat 1.3 % 0.0 % 6.1 % 6.1 % 4.9 % 8.8 % 3.3 % 9.4 %

Feed barley -0.7 % 1.6 % 0.0 % 0.0 % -1.5 % 4.9 % -2.7 % -4.5 %

Malting barley -0.7 % 1.6 % 0.0 % 0.0 % -1.5 % 4.9 % -2.7 % -4.5 %

Oats 3.8 % 3.0 % 5.9 % 5.9 % 0.0 % 5.3 % 0.5 % -2.6 %

Rapeseed 5.8 % 5.2 % 7.2 % 7.2 % 5.4 % 0.0 % 4.9 % 9.5 %

Fallow 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

NMF 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Table 2. Yield effects based on expert estimates (Purola and Lehtonen 2020), applied in cases NP and NP+LC

Preceding crop

Current crop
Spring 
wheat

Winter 
wheat

Feed 
barley

Malting 
barley Spring oats Rapeseed Fallow NMF

Spring wheat -5 % -5 % -5 % -5 % -4 % 0 % 0 % 0 %

Winter wheat -5 % -5 % -5 % -5 % -4 % 0 % 0 % 0 %

Feed barley -5 % -5 % -5 % -5 % -4 % 0 % 0 % 0 %

Malting barley -5 % -5 % -5 % -5 % -4 % 0 % 0 % 0 %

Spring oats -4 % -4 % -4 % -4 % -5 % 0 % 0 % 0 %

Rapeseed 0 % 0 % 0 % 0 % 0 % -35 % 0 % 0 %

Fallow 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %

NMF 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
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To see how the model economically performs under different assumptions, we analyze three different model 
specifications:

                 1. no pre-crop values, but with cumulative yield effects over 5 years and minimal land-use constraints (NP)

           2. no pre-crop values, but with cumulative yield effects over 5 years and extensive land-use constraints 
 (NP+LC) (c.f. Purola and Lehtonen 2020)

         3. pre-crop values over 1 year with cumulative monocultural yield losses over 5 years and minimal 
  land-use constraints (Pre-crop)

For each of these cases we find the solution maximizing the net present value subject to crop rotation, liming,  
nitrogen fertilization, and fungicide use. 

For cases NP and NP+LC, only monoculture effects are accounted for in the yield effects, thus (γi) is set to 0. Total 
yield effects in these cases are as in Purola and Lehtonen (2020) and are presented in Table 2. For case Pre-crop 
we assume yield effects both from pre-crop values as well as from monocultural cultivation. 

All land use constraints, both minimal and extensive, are based on agricultural subsidy (CAP) requirements: with 
minimal land-use constraint there is lower and upper limits on the share  of nature managed field and fallows. 
With extensive land-use constraints the model is prevented from growing e.g. extreme monocultures and instead 
directed towards slightly more diverse rotations as specified in the CAP greening conditions (EC 2021), even if they 
may be economically inferior. The detailed description of all land constraints is presented in Appendix 1. The ex-
tensive land use constraints also rule out some most likely infeasible crop rotations, e.g. winter cereals may not 
be possible to be sown after oats or rapeseed requiring late harvesting times. 

Average variable costs and subsidies per crop are based on DREMFIA sector model used e.g. analysis in Lehtonen 
and Niemi (2018) and outputs reported in official statistics over 15 years (from 2000 to 2018) (OSF 2021). These 
parameter values are presented in Table A1 in Annex, and cost functions for liming, fungicide use, and nitrogen 
fertilization are presented in Table A3.

Results

Under case NP (no pre-crop values considered) with cumulative yield losses and minimal constraints, the opti-
mal crop rotation consists predominantly of malting barley, with mainly rapeseed and nature managed fields as 
break crops (Fig. 1). On average, about 70% of the total area is allocated to malting barley, 15% on rapeseed and 
10% on nature managed field (Fig. 2). This, while being the optimal solution, is not practically feasible. Including 
more restricting land-use constraints (case NP+LC), changes the optimal crop rotation into a much more diverse 
solution (Fig. 1). In this case the model allocated on average 50% of the land on malting barley, 20% of the land 
on spring wheat, 20% on rapeseed and nature managed field, and 5% on oats (Fig. 2). Finally, extending the mod-
el to pre-crop values and minimal land use constraints adds more diversity to the crop rotation solution (Fig. 1), 
with about 33% of land-area used on average on malting barley, 22% on both spring and winter wheat, 12% on 
rapeseed, 5% on oats, and 5% on nature managed field (Fig. 2). These land use share of total cereals area is al-
ready quite close to the aggregate average of the region (considering all production lines, not only crop farms), 
63% (73% if not considering grasslands) (OSF 2021). The share of total cereals on crop farms is higher than the 
average of the whole region.

While both feed barley and fallow were options in the model, neither was optimal to choose in any of the scenarios. 
This is because malting barley is more profitable than feed barley (Table A1), yet has the same yield-effects (Table 
1). Similarly, nature managed field (NMF) accrues higher subsidies, and has high pre-crop effects when followed 
by winter wheat or rapeseed (Table 1). This can be seen in the results between the models as well: in the case 
NP+LC, as there are no pre-crop values and thus no significant differences in the yield effects between the cereals, 
NMF is quite often followed by malting barley (Fig. 1). However, when the model is extended to utilize pre-crop 
values, NMF is most often followed by winter wheat, utilizing the high pre-crop benefits to obtain higher yields.

Comparing the results between the cases NP and NP+LC, differences in average crop yields per parcel are only 
minor (Fig. 3). This is because the effects of preceding crops between the cases are identical, and those are  
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minimized in the optimization in both cases. Compared to the average observed yields over 2000–2018 in the 
region (Purola and Lehtonen 2020), the crop yields under the first two cases are few percentages lower. This is 
because in these two cases we only consider the negative effects of crop rotation, the cumulative monocultural 
yield losses. Enabling pre-crop values in the model (case Pre-crop), however, results in higher crop yields than with 
cases NP and NP+LC, as well as with the observed yields. The higher crop yields of the case Pre-crop compared 
to e.g. with NP+LC are mainly because of the positive short-run (one-year) pre-crop values; optimization is very 
efficient in utilizing the pre-crop values, resulting in higher yields. As expected, differences in net present values 
among all three cases are similar to that of yields (Fig. 4), being highest in the case Pre-crop. It is noteworthy that 
while the optimal crop rotations between the cases NP and NP+LC are very different, the differences between 
the net present values are only small. 

Annual greenhouse gas emissions per ton of crop production are presented in Figure 5. The emissions for cases NP 
and NP+LC are on average around 1 ton of CO2eq per ton of crop production, while for the case Pre-crop for every 
ton of crop produced approximately 1.2 tons of CO2eq are emitted. This difference in the GHG emissions is explained 
mostly due to higher N2O emissions from fertilization. Compared to cases NP and NP+LC, in case Pre-crop, crop 
production is more focused on spring and winter wheat (Fig. 2), which both require significantly larger amounts 
of fertilizer (Table A2). Thus, the CO2eq emissions are larger in case Pre-crop than in cases NP and NP+LC (Fig. 5). 

 

Fig. 1. Optimal crop rotation with no pre-crop values and minimal land-use constraints (NP), no pre-crop values 
with extensive land-use constraints (NP+LC), and pre-crop values with minimal land-use constraints (Pre-crop). 
P1–P10 are the different parcels, 1 being the closest to farm center and 10 the furthest, and 1 to 30 are the years.
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Fig. 3. Average calculated crop yields over all parcels in each scenario, 
and crop yields from official statistics. Analyzed cases: no pre-crop values 
and minimal land-use constraints (NP), no pre-crop values with extensive 
land-use constraints (NP+LC), and pre-crop values with minimal land-use 
constraints (Pre-crop).
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Discussion

Recent empirical estimations on pre-crop effects (Peltonen-Sainio et al. 2019) enable their integration into agri-
cultural models and crop rotation optimization. Changes in crop rotation have dynamic consequences in land use 
and crop management over several years, and each crop affects the next ones in rotation. Per our results, utilizing 
the pre-crop values optimally can result in significant economic gains in the long-term. Farmers should focus on 
crop rotations and benefits of pre-crop values rather than focus on individual crops and their management in a 
static setting which hides dynamic consequences. Our results showed that in general, utilizing pre-crop values in 
decision making also eliminates the need for additional constraints such as specific rules on which crop sequences 
are feasible.

So far, optimal crop rotation analyses have assumed cumulative monocultural yield losses based on expert judg-
ment (Purola et al. 2018, Purola and Lehtonen 2020, 2022). For example, per expert estimates, monocultures 
cause some yield losses, particularly by increasing risks of pests and diseases, which are exacerbated due to  
climate change. Hence, such monocultural yield losses can be avoided by cultivating different crops in a sequence 
(Jalli et al. 2021). While these assumptions are reasonable, there remains uncertainty in the magnitude of mono-
cultural yield losses which may accumulate over time (Purola and Lehtonen 2020). Furthermore, without sound 
empirical basis for the monocultural yield loss coefficients, there might be a need to add additional constraints 
to prevent unrealistic or infeasible solutions. These constraints in addition impose lost market revenue from the 
most profitable crops, malting barley in our case. While the share of malting barley is significantly lower in case 
NP+LC compared to the case NP, the difference in NPV is relatively small, as the profitability of wheat is almost 
as good as that of malting barley. The use of empirically estimated pre-crop values makes the model more robust 
and reduces or eliminates the need to rely on subjective expert estimates of yield losses or additional constraints, 
thus these losses of revenue are avoided as well.

In this paper, we show that by combining empirically estimated pre-crop values in crop rotation optimization  
allows us to loosen the land-use constraints specific to certain crop sequences, and still obtain diverse crop  
rotation solutions and feasible results for the region. For example, to avoid unrealistic results and obtain  
results closer to typical land use in the region, Purola and Lehtonen (2020) uses constraints to avoid sowing winter  
cereals after oats or rapeseed due to possible late maturing of oats or rapeseed which may risk sufficient develop-
ment of winter cereals before winter. In addition, no malting barley was allowed after malting barley or feed barley  
because of the cultivation recommendations (VYR 2012, 2014). In this paper, case NP+LC, uses similar constraints. 
However, while imposing these constraints led to model solutions much closer (compared to case NP) to typical or 

Fig. 5. Annual greenhouse gas emissions per ton of total harvest for cases NP, NP+LC, and Pre-crop. Basis 
for the calculations is the official national GHG inventory (Statistics Finland 2021) compatible to the 
IPCC methodology and coefficients. Cases: no pre-crop values and minimal land-use constraints (NP), 
no pre-crop values with extensive land-use constraints (NP+LC), and pre-crop values with minimal land-
use constraints (Pre-crop).
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average land use in the region, and thus were crucial for applying the model prior extending to pre-crop values, 
they also limit the applicability of the model for more complex questions. Expert estimates emphasize the role 
of break crops, and other synergies, such as positive yield effects of winter wheat, are largely ignored, thus the  
results differ from the case Pre-crop. This suggests that the magnitude of the pre-crop effects is unclear and  
utilized suboptimally also in expert estimates.

One challenge that the pre-crop values introduce is their effect on the covariance matrix. In our study, risk aversion 
was assumed to be at very low levels, so we assumed that rational economic decision-making only considers  
historical covariation of profits between crops. Introducing the effects of pre-crop yield changes on the covariation 
of profits would be difficult and would require a farmer to also consider the effects of crop rotation on the future 
covariation of profits between crops. This optimization problem becomes quite complex. It is an interesting issue 
to be considered in future studies with higher risk aversion.

Rodriguez et al. (2021) found, when they utilized data from field trials and questionnaire, that more diverse 
crop rotations result in lower profitability in several cases that were considered. This seemingly contradicts our  
result on improved profitability when utilizing pre-crop values optimally in case where pre-crop values are  
utilized. Therefore, this may imply that although the utilization of pre-crop values optimally results in higher profits, 
farmers might lack knowledge or information on the most efficient previous and subsequent crop combinations in 
rotation. Rodriguez et al. (2021) reported that one of the main obstacles to diversification is the lack of economic 
incentives. However, our findings show that the main economic incentive is the increased yields for several crops 
resulting from pre-crop value utilization. Because of the pre-crop values, it is economically beneficial to cultivate 
even less-profitable break crops to obtain higher yields the following year (Kirkegaard et al. 2008). 

In this paper we chose to focus on the main crops in the region. While many minor crops have excellent pre-crop 
values, this paper focuses on the methodological aspects of utilizing empirically estimated pre-crop values in  
optimization. In addition, the availability of e.g. crop price data, makes including more minor crops challenging. 
This is also reflected in Rodriguez et al. (2021), where the lack of market demand affected the profitability. By  
limiting the crop selection to major crops, we can relatively safely assume stable market prospects. 

However, the question of market demand becomes an important aspect if the farm model -based analysis is  
extended to minor crops with significant pre-crop values, e.g. grain legumes, potatoes (Solanum tuberosum L.), 
sugar beet (Beta vulgaris var. altissima L.) or caraway (also included in the pre-crop values of Peltonen-Sainio et 
al. 2019). While in single farm the pre-crop effect is difficult to observe due to various differences between the 
parcels, the method developed to estimate pre-crop values from high number of farmers’ fields makes it possible 
to have data to cover more years and regions (Peltonen-Sainio et al. 2019). This makes it possible to include  
minor crops when optimizing the crop rotations which may provide interesting results and insights for farmers and 
value chains, but also to consider the contribution of regional differences to farm profitability. Introducing new 
crops, especially those that fix nitrogen in the soil, such as legumes, would also require the model to be extended 
to account for this ‘inherited’ nitrogen in the fertilization optimization.

We reach similar crop rotation diversity whether we apply the model with pre-crop values and minimal land-use 
constraints, or only monocultural yield losses and extensive land-use constraints. While the pre-crop effects are 
utilized in also traditional practices to some extent, the difference between optimal results and observed (Fig. 3) 
suggests that the utilization of these values in decision making is most likely suboptimal. Our results show that 
farmers could attain more value by utilizing the pre-crop effects optimally in their farm management and decision 
making. Thus, the analysis presented responds to the need of qualified tools and assistance for cropping diversi-
fication and crop rotations, called for by e.g. farmers in Sweden (Rodriguez et al. 2021). 

Utilizing extensive land-use constraints may limit the applicability of the model to wider issues. Since using pre-
crop values in optimization results in realistic solutions without additional land use constraints, this approach  
enables the study to tackle more diverse questions. Such situations include changed prices or subsidies, or changed 
productivity due to climate change, climate change adaptation through e.g. new crop cultivars (see e.g. Purola et 
al. 2018), or climate change mitigation. 
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Conclusions

This study developed a dynamic optimization farm model capable of accounting for pre-crop effects, i.e. a yield 
gain or loss of a crop if certain other crops were cultivated prior. With this integration, we can abolish the land-
use constraints preventing infeasible or non-recommended crop rotation solutions applied in earlier papers and 
gain significant economic gains if they are aware of and utilize pre-crop effects consistently over several years. The 
economic gains are, however, conditional, among other things, on the prices of agricultural commodities, discount 
rate and current policy conditions. Utilizing pre-crop effects may also contribute to land diversification towards 
sustainable and resilient agriculture. 

Compared to earlier approaches in the literature, this kind of dynamic modelling brings agricultural economics 
closer to the specific agronomy of cropping diversification and rotation. It can be used in various studies specific 
on adaptation to climate change via crop rotations and new crop cultivars, in studies specific on soil organic  
carbon when data are available on crop specific soil carbon effects, and in studies specific on soil improvements, 
with sensitivity analysis related to market price and agricultural policy changes.
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Appendices

Table A1. Parameter values applied in numerical analysis. Sources: Unit prices are long-term average farm gate prices of crops in 
Finland over 2000–2018, crop yields are average yields observed in the South-West Finland 2000–2018 (OSF 2021). The average 
variable costs and subsidies of the crops specific for South-West Finland are derived from a recent updated version of a dynamic 
multi-regional sector model of Finnish agriculture (DREMFIA) (Lehtonen and Niemi 2018), which relies on validated approximations 
of the average use of inputs per crop in each region. Optimal pH and fungal disease losses are based on Purola et al. (2018) and 
Purola and Lehtonen (2020).

 
Unit price, 

pi 
€ / kg

Baseline 
yields, Ŷ    

kg / ha

Variable 
costs, Vi 
€ / ha

Subsidies, Si  
€ / ha

Baseline gross 
margin, 
€ / ha

Optimal 
pH

Fungal disease 
losses 

%

Spring Wheat 0.148 3788 580 650 631 6.5 5.85 %

Winter Wheat 0.148 4193 610 695 706 6.5 5.85 %

Feed Barley 0.128 3884 527 563 533 6.1 6.26 %

Malting Barley 0.153 3885 589 635 640 6.5 6.26 %

Oats 0.123 3877 510 563 530 6.1 0 %

Rapeseed 0.285 1731 587 705 611 6.1 0 %

Fallow 0 0 244 390 146 - 0 %

NMF 0 0 264 554 290 - 0 %
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Appendix 1
Land-use constraints applied in each of the scenarios in detail. The constraints applied are based on CAP agricul-
tural subsidy requirements and cultivation recommendations (VYR 2012, 2014)
NP: 
 Fallow + NMF minimum of 5% of total land area.
 Max 75% of total area on single crop.
 Winter wheat cannot be cultivated after oats or rapeseed, as they have no time to root after these  
 late-maturing crops.

232.7525 0.685L tp tpc L L= −

34

52

Barley
F tp

Wheat
F tp

c F

c F

=

=

1.5N ic N=

Table A3. Liming, fungicide use, and nitrogen fertilization cost functions 
(Purola et al. 2018, Purola and Lehtonen 2020)

Cost function

Liming  

Fungicide

 

Fertilization  

Table A4. Optimal nitrogen use. Source: Purola et al. 2020, adjusted for South-West Finland 
as in Purola and Lehtonen 2020.

 
Optimal nitrogen use, 

Ni kg ha-1

Spring Wheat 110

Winter Wheat 140

Feed Barley 90

Malting Barley 90

Oats 90

Rapeseed 100

Fallow 0

Nature Managed Field 0

Table A2. Logistical costs for each parcel (Purola and Lehtonen 2020).

Parcel Logistical costs, €

1 1.115

2 1.115

3 2.23

4 2.23

5 4.46

6 4.46

7 8.92

8 11.15

9 13.38

10 15.61
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NP + LC:
 Fallow + NMF minimum of 5% of total land area.
 Max 75% of area on single crop.
 Any combination of two crops can be max of 75% of land area.
 Malting barley cannot be cultivated on single parcel in subsequent years.
 Winter wheat cannot be cultivated after oats or rapeseed, as they have no time to root after these  
 late-maturing crops.

Pre-crop:
 Fallow + NMF minimum of 5% of total land area.
 Max 75% of area on single crop.
 Winter wheat cannot be cultivated after oats or rapeseed, as they have no time to root after these  
 late-maturing crops.
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