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In precision farming fields may be divided into management zones according to the spatial variation
in soil properties. Clay content is an important soil characteristic, because it is associated with other
soil properties that are important in management. Soil survey data from 150 sampling sites taken
from an area of 218 ha were used to predict the spatial variation of clay percentage geostatistically in
an agricultural soil in Jokioinen, Finland. The exponential and spherical models with a nugget com-
ponent were fitted to the experimental variogram. This indicated that the medium-range pattern could
be modelled, but the short-range variation could not, due to sparsity of sample points at short distanc-
es. The effect of sampling density on the kriging error was evaluated using the random simulation
method. Kriging with a spherical model produced a map with smooth variation in clay percentage.
The standard error of kriging estimates decreased only slightly when the density of samples was
increased. The predictions were divided into three classes based on the clay percentage. Areas with
clay content below 30%, between 30% and 60% and over 60% belong to non-clay, clay and heavy
clay zones, respectively. With additional information from the soil samples on the contents of nutri-
ents and organic matter these areas can serve as agricultural management zones.
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Introduction

In precision farming fertilizers are applied to
meet the needs of the crop and, on the other hand,
to avoid excessive applications with the associ-
ated environmental implications. To fertilize dif-
ferent parts of a field according to the specific
needs of the crop, the field can be divided into
management zones based on previous yields and
the data obtained from soil testing. The zones
can be delineated in advance and the locations
of the zones stored in the computer of advanced

machinery for fertilizer application, which then
adapts the rates of application according to the
location in the field. When sufficient numerical
data on soil characteristics are available, man-
agement zones can be delineated using the meth-
ods of geostatistics and mapping.

Geostatistical analysis has become a widely
used for predicting and mapping the spatial var-
iation of soil properties provided that there is a
large number of soil samples. According to Web-
ster and Oliver (1992) at least 100 data are re-
quired to estimate the variogram acceptably.
Geostatistics has been applied in agriculture,
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especially in soil science. Recently, geostatisti-
cal analyses have been used to model the spatial
variability of topsoil (Brooker 2001), investigate
spatial variation of radon concentration in the
soil (Oliver and Khayarat 2001) and predict spa-
tially bulk density and field capacity of Ferral-
sols (Utset et al. 2000). Bocchi et al. (2000) used
factorial kriging to characterize the spatial vari-
ation of soil physical, hydrological and chemi-
cal properties in a field in northern Italy, and
Saldana et al. (1998) examined the variation of
soil properties at different scales.

So far, geostatistics has not been widely
adopted as an agricultural tool in Finland. Haa-
pala (1995) used experimental variograms to
analyse yield variation over short distances and
found periodic variograms with wavelengths of
2 m to 2.5 m. Usually, the information on soil
characteristics of a field is based on few widely
spaced samples. In practical farming one or a
few soil samples per field are used as the basis
for management of the entire field as a homoge-
neous unit. However, soil properties, such as the
clay content, may vary from under 10% to over
60% within a distance of 100 m (Jokinen 1983).
If the spatial variation of soil properties can be
modelled and predicted using geostatistics, man-
agement zones could be delineated according to
soil characteristics instead of using the entire
field as a management unit.

In the present study, soil survey data were
used to predict the spatial variation in particle
size fractions of agricultural soil, in an attempt
to delineate management zones. The objectives
of this study were to: i) determine how soil sur-
vey data can be used in the spatial prediction of
clay content, ii) analyse the effect of sampling

density on the errors of the kriged predictions,
and iii) delineate management zones for agricul-
tural fields using geostatistical analysis and map-
ping.

Material and methods

Study area
The study area is located on the research farm
of MTT Agrifood Research Finland in Jokioi-
nen, southwestern Finland (23°27’E, 60°48’N).
The survey area consisted of 37 fields with a total
area of 218 ha. The material for this study com-
prised of 180 plots of soil survey data collected
in 1996 with an average sampling density of 0.8
samples per hectare (Fig. 1). The Loimijoki River
divides the survey area into the southern and
northern parts.

The soil samples were bulked from 5 sub-
samples taken within a 100 m2 plot. The soil tex-
ture of the 150 plots was analysed using a pi-
pette method (Elonen 1970), in which hydrogen
peroxide is used to decompose the aggregates
and sodium pyrophosphate as the dispersing
agent. The agricultural soil in Jokioinen is typi-
cally dominated by clay.

In Finland, the fine-earth fraction (< 2 mm)
of soil is traditionally divided into 4 parts (Ta-
ble 1), which are referred to here as clay, silt,
fine sand and sand (Aaltonen et al. 1949). The
particle sizes and their approximate equivalents
in the USDA system (Soil Survey Staff 1993)
are given in Table 1.

Table 1. The particle sizes and their approximate equivalents in the USDA system.

Particle size, Finnish term Approximate equivalent in the USDA
mm (Aaltonen et al. 1949) system (Soil Survey Staff 1993)

< 0.002 clay clay
0.002–0.02 silt fine silt
0.02–0.2 fine sand coarse silt + very fine sand + fine sand
0.2–2 sand medium + coarse + very coarse sand
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Geostatistical methods
The data were analysed using geostatistical
methods to describe and interpret the spatial var-
iation of soil texture fractions. Since the vario-
gram is sensitive to departures from normality
an exploratory data analysis using graphical
plots, descriptive statistics and analysis of the
distribution was done before modelling the spa-
tial dependence. Furthermore, possible anisot-
ropy was explored by computing the variograms
in three directions, i.e. 0°, 60° and 120°, and plot-
ting the semivariances in the same graph.

The exponential (Eq. 1) and spherical (Eq.
2) models with a nugget were fitted to determine
the best fitting function based on the residual sum
of squares. Variograms were computed and non-
linear models fitted using VARIOGRAM- and
NLIN-procedures of SAS for Windows release
8.2 (SAS 1999). The equation for the exponen-
tial model is

(1) γ(h) c0 + c{1 – exp(– )}
where c0 is the nugget, c is sill variance and r is
a distance parameter that defines the spatial ex-
tent of the model (Webster and Oliver 2001).
This function approaches its sill asymptotically
and so does not have a finite range. For practi-
cal purposes an effective range, a = 3r, is as-
signed to this model, which is usually the dis-
tance at which γ equals 95% of the sill variance
(Webster and Oliver 2001). The spherical mod-
el has the function

(2) γ(h) = {c0 + c for h > a

where c0 is the nugget, c is the sill as in equation
1 and a is range.

Kriging is only one technique among many
for interpolating a variable from sample points,
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but its advantage is that the estimates for a point
or block are obtained with minimum variance
(kriging variance) (Lark 2000). Therefore, the
estimated values of the parameters of equations
(1) and (2) were used to predict values at the
nodes of a 20-m grid by ordinary punctual krig-
ing, using the SAS software and the KRIGE2D
procedure (SAS 1999). Cross validation was
used to compare the goodness of the models in
terms of predictions. Maps of the kriged predic-
tions and standard errors were produced, using
ArcMap GIS software from ESRI (Minami et al.
1999).

Sampling density
The kriging variances depend on the configura-
tion of the sampling points in relation to the tar-
get point or block and on the variogram, they do
not depend on the observed values at those
points. Therefore, if the variogram is known the
kriging errors can be determined for any sam-
pling configuration (Webster and Oliver 2001).
Thus, the effect of sampling density was evalu-
ated using the estimated variogram parameters
of the spherical model (Eq. 2). Sample density
was increased by adding new points to the map
until the required sample size was achieved.
Randomly selected new points were accepted if
the minimum distance between any two points
was at least 50 m. When the sampling density
was 3.0 points per hectare, the minimum distance
between any two points was 40 m. The randomi-
zation method was selected because it simulates
quite well the choosing of points in practice.
Randomization was repeated 3 times for each
density.

Results

Exploratory data analysis
The particle size distribution of the soil samples
from the survey area are dominated by the clay
fraction, i.e. the average clay content was 52%
(Table 2). The proportions of silt, fine sand and
sand were 23%, 17% and 8%, respectively. The
statistical distributions of clay and silt contents
were near normal, but the fine sand and sand
fractions were positively skewed. The latter
reflects a few very sandy soils among the sam-
ple. After the transformation of fine sand and
sand by the arcsine square-root, these values
were normally distributed. No trend was ob-
served based on graphical exploration of the clay
data.

Variograms and variogram models
The lag distance used in the variogram was 80
m, i.e. this was the shortest distance that could
be used without decreasing the number of the
observations and the reliability of the variogram.
The spatial variation in the data is isotropic, be-
cause no clear differences could be found in the
variograms computed in different directions. The
parameters of the fitted, authorised variogram
models are given in Table 3. Both models have a
clear nugget effect, which was expected because
of the coarse sampling intensity used in the soil
survey. The nugget variance encompasses spa-
tially dependent variation over distances less
than the shortest lag, measurement error and any

Table 2. Summary statistics of soil texture components in the survey area.

Soil fraction, % Mean Min Max Variance Standard Skewness
deviation

Clay 52 11 78 159.74 12.64 –0.6899
Silt 23 06 36 057.84 07.61 –0.3161
Fine sand 17 04 57 137.64 11.73 01.6228
Sand 08 00 43 039.76 06.31 02.6997
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purely random variation (Oliver and Khayrat
2001). Both models are bounded and appear
quite similar (Fig. 2); however, there is a differ-
ence in the goodness of fit of the first three lags.
This is important, because kriging is local and
near points carry more weight than more distant
points. The lack-of-fit statistic (MSerror 43.96)
confirms the visual appraisal that the exponen-
tial model was poorer. The spherical model had
the smaller error (MSerror 33.72) and it was cho-
sen for predicting the clay fraction and for de-
termining the optimal sample density. The range
of spatial dependence was 660 m for the spheri-
cal model (Table 3). The effective range, i.e. 95%
of the sill variance attained, for the exponential
model was 891.3 m.

Predictions and standard errors
Cross validation showed that the spherical mod-
el was better than the exponential model in terms
of mean error (0.05 vs. 0.09), mean squared er-
ror (102.7 vs. 104.9) and mean squared devia-
tion ratio (1.09 vs. 1.11). Graphical plots of the
cross validated residuals, true values and loca-
tions did not reveal any shortcomings, e.g. are-
as, where the models were not compatible with
the data. The kriged estimates of the clay per-
centage using the parameters of the spherical and
exponential variogram models show the same
pattern of variation in clay content for the study
area (Fig. 3). The spherical model produced
slightly smoother variation than the exponential
function. The latter produced a map with a little
more detail, i.e. some variation at shorter dis-
tances, because the estimated nugget effect was
smaller than for the spherical model. The results
suggest that the medium-range pattern had been

resolved by the sampling, but the short-range
variation has not.

According to the Finnish classification, the
predicted values were divided into 3 classes
based on the clay percentage. Areas with clay
content below 30%, between 30% and 60% and
over 60% belong to non-clay, clay and heavy clay
zones, respectively. Most of the fields of the sur-
vey area (Fig. 3) contain 2 or even 3 of the classes
defined above, i.e. the soil of a field can vary
from non-clay to heavy clay types. This classi-
fied surface can be used to delineate the prelim-
inary management zones, for example by digi-
tising or vectorising the boundaries between the
classes.

In general, the kriging errors were consist-
ently between 8% and 10%, and the median of
error was 9.3% and 9.0% for the spherical and
exponential models, respectively (Fig. 4). The
largest errors were in the northwestern and east-
ern edges of the survey area where they exceed-
ed 12%, but generally they were smaller than
10% in over 95% of the study area. Only 5% of
all errors were smaller than 9.0% and 8.4%, ac-
cording to the spherical and exponential model,
respectively (Table 4). Hence, the patterns in the
spherical and exponential model error maps were
very similar, but the errors in the exponential
model were slightly smaller (Fig. 4). Again, the

Table 3. Parameters of the fitted variogram models.

Variogram model Nugget Sill Range

Exponential 41.87 139.50 297.10
Spherical 59.79 107.80 659.60

Fig. 2. The spherical (solid line) and exponential (dash line)
variogram models (solid line) and the sample variogram
(stars) for clay fraction data.
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Spherical Exponential

Clay %

Below 30

30 − 40

40 − 50

50 − 60

Above 60

Fig. 3. Kriging estimates of the clay percentage when parameters of spherical and exponential variogram models were used
in prediction.

main reason for this is the nugget effect, which
is smaller in the exponential model than in spher-
ical model. However, from the practical point of
view the difference between error levels is so
small that it is of no major consequence.

Effect of sampling density
The standard error of the kriged estimates de-
creased only slightly when the density of the
sampling was increased (Table 4). However, the
range in errors became smaller and the effect was
strongest at the edges of the map and where there
were no samples originally. In general, the ex-
ponential model has smaller errors because the
estimated nugget effect was smaller than that for
the spherical model. The mean standard error was
9.3 for the spherical model (Table 4). The dif-
ference between models increased when the den-

sity of the samples increased, the final the mean
standard error was 8.7 and 8.0 for the spherical
and exponential models, respectively.

Discussion

This study shows how management zones can
be delineated based on geostatistical analysis. In
mineral soils the clay content may be the single
most important soil characteristic determining
those soil properties important in management.
The clay content is inversely related to the con-
tent of coarser textural fractions and to a large
extent determines the soil type in fine- and me-
dium-textured mineral soils that dominate the
fields studied. The clay content influences many
physical properties such as water-holding capac-
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ity. It also influences the concentration of cati-
onic nutrients and cation exchange capacity. Clay
is the principal variable used to interpret the re-
sults of soil testing. The interpretations are dif-
ferent on clayey, silty and sandy soil (Viljavuus-
palvelu 2000) resulting in different recommen-
dations of P, K and Mg in clayey and non-clayey

soils. The pH buffering and liming requirements
correlate with clay content. Therefore, different
liming rates are recommended in Finland for
soils with clay contents of over 60%, 30–60%,
15–30% and under 15% (Viljavuuspalvelu 2000).
The zones delineated in this study on the basis
of clay content can thus be used, when amended

Spherical Exponential

Error %

Below 9.0

9.0 − 10.0

10.0 − 11.0

11.0 − 12.0

Above 12

Fig. 4. Kriging standard errors in clay percentage when parameters of spherical and exponential variogram models were
used in prediction.

Table 4. Distribution of standard error of kriging estimates for 6 different densities. The original density
was 0.7 points per hectare. Columns 5%, 25%, 50%, 75% and 95% include 5%, 25%, 50%, 75% and 95%
percentiles of error distribution, respectively.

Model and density 5% 25% 50% 75% 95%

Spherical
0.25 ha–1 9.6 10.00 10.30 10.90 11.9
0.50 ha–1 9.1 9.4 9.7 9.9 10.6
0.70 ha–1 9.0 9.2 9.3 9.6 09.9
1.50 ha–1 8.8 8.9 9.0 9.1 09.4
3.00 ha–1 8.6 8.6 8.7 8.8 09.0
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with chemical soil test data, as management
zones for fertilizer applications and liming.

The textural variation seen in several exper-
imental areas suggests that sub-division of fields
into management zones is reasonable. The large
variation in clay content and several other soil
characteristics within a field in the study by Joki-
nen (1983) resulted in large standard deviations
of the mean values. Therefore to determine the
mean value accurately, a large sample size would
be required, but even then, because of the spa-
tial variation, the mean for the entire field would
be unrepresentative. Identification of zones on
the basis of clay content might enable targeted
sampling within each zone for chemical analy-
ses, which might reduce the sample sizes and the
cost of analyses substantially.

Interpolation is appropriate only if the char-
acteristic studied varies continuously and the
sample data are spatially dependent or correlat-
ed (Oliver and Khayrat 2001). The variogram for
clay showed that with 150 samples and an aver-
age separation between samples of 145 m the
spatial variation of the clay fraction could be
modelled satisfactorily. This supports the find-
ing of Webster and Oliver (1992) that at least
100 samples are required to model the variogram.

The nugget effect present, i.e. 55% of the sill
variance, showed that there was unresolved var-
iation at distances less than the sampling inter-
val. The short-range variation in clay percent-
age could be identified with a more intensive
sampling, for example Saldana et al. (1998) used
a 10-m sampling interval. In the present study
the nugget variance was so large that increasing
the sampling interval from 145 m to 33 m by
random simulation method did not decrease
greatly the standard error of the predicted clay
content. This conclusion is based on assumption
that the estimated variogram is adequate for all
densities. Because of lack of the observations at
small distances, the estimated nugget variance
is probably too large. Therefore, the effect of
increasing the sampling density was underesti-
mated. However, it is noteworthy that at the edg-
es of the research area the standard error de-
creased more with increased sampling density

than in the central areas. In large field areas,
more accurate estimates for clay content could
be obtained if farms bordering each other could
cooperate by combining the data for the geosta-
tistical delineation of management zones.

The kriging variance can be used to estimate
the reliability of the predictions, bearing in mind
that it depends on how accurately the variation
is presented by the chosen spatial model (Web-
ster and Oliver 2001). There were differences
between the nugget variances of the examined
models, but there is no evidence of which esti-
mate was the best. If the nugget variance is over-
estimated then the punctual kriging variances
will also be overestimated, in which case the
kriged estimates would be more reliable than
they appear to be (Webster and Oliver 2001).
Thus, it is possible that the kriging errors were
overestimated by the spherical model in the
present study.

Fertilizer recommendations in Finland de-
pend on: 1) the crop, 2) expected yield (nutrient
uptake), 3) soil texture and humus content, and
4) the nutrient content of the soil. Soil nutrients
(except N) are analysed accurately in the labo-
ratory. These chemical data are interpreted ac-
cording to soil texture, which is currently deter-
mined by finger assessment in routine soil test-
ing. It was recently shown (Peltovuori 1999) that
estimates of soil texture and humus content, ob-
tained from various Finnish laboratories, con-
tained errors that occasionally resulted in devi-
ations of ± 10 kg ha–1 from the correct recom-
mendations for phosphorus fertilisation. Fine-
tuning of K and also N fertilizer applications are
equally dependent on soil texture. Incorrect es-
timates of soil texture and humus content can
undermine the accurate results of chemical anal-
yses on soil nutrients. This shortcoming also pre-
vents precision farming from being practiced to
the full extent of its capabilities.

Reliable data on soil texture and humus con-
tent are required by precision farming to deline-
ate management zones and for accurate fertiliz-
er application. Obtaining these data is expensive
because it seems that finger assessment should
be replaced with more accurate laboratory de-
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termination. This aim can be achieved only by
less expensive methods for these determinations,
particularly for texture. However, texture is a
permanent soil characteristic and needs to be
determined only once, and organic matter con-
tent changes slowly. Investment in these analy-
ses could be counterbalanced by reducing the
number of samples taken in each management

zone for analysis in repeated routine soil tests.
Responding to soil variation at any scale requires
suitable systems for processing the data and gen-
erating from it information to assist in making
decisions (Lark and Bolam1997). Geostatistical
methods with GIS provide tools for identifying
the management zones of large field areas.
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SELOSTUS
Viljelymaiden savespitoisuuden alueellistaminen geostatistiikan ja pistemäisen

tiedon avulla
Ari Talkkari, Lauri Jauhiainen ja Markku Yli-Halla

MTT (Maa- ja elintarviketalouden tutkimuskeskus)

Täsmäviljelyssä pellot jaetaan käsittelyvyöhykkeisiin
maaperän ominaisuuksien alueellisen vaihtelun mu-
kaan. Tämän tutkimuksen tavoitteena oli analysoida
viljelymaan savespitoisuuden alueellista vaihtelua
viljavuusanalyysiaineiston perusteella sekä rajata kä-
sittelyvyöhykkeitä geostatistiikan ja paikkatietotek-
niikan menetelmiä käyttäen.

Tässä tutkimuksessa 218 peltohehtaarin alue jaet-
tiin vyöhykkeisiin savespitoisuuden perusteella, kos-
ka se on keskeinen maaperän ominaisuus viljelytoi-
menpiteiden kannalta. Savespitoisuuden alueellista-
miseen oli käytettävissä 150 näytepisteen tiedot.
Näistä laadittiin empiirinen variogrammi, johon so-
vitettiin kaksi erilaista mallia. Malleja käytettiin
kriging-interpoloinnissa, jossa savespitoisuudelle las-
kettiin jatkuva pinta 20 m:n resoluutiolla. Menetel-
mällä pystyttiin mallintamaan ja ennustamaan saves-
pitoisuuden keskipitkän matkan vaihtelu, mutta ly-
hyen matkan vaihtelua ei havaittu, koska lähtöaineis-

ton pisteverkko oli melko harva (0,7 kpl/ha). Lisäk-
si tutkittiin näytteenottotiheyden vaikutusta ennuste-
virheeseen simuloimalla aineistoon uusia havainto-
pisteitä useilla eri tiheyksillä. Ennustevirhe pieneni
näytteenottotiheyden kasvaessa 0,7 pisteestä 3 pistee-
seen hehtaarilla vain 0,5–1 %-yksikköä. Tämä joh-
tui aineiston selittämättömän vaihtelun suuresta osuu-
desta (n. 36 % kokonaisvaihtelusta).

Tutkittu peltoalue jaettiin geostatistisen analyy-
sin perusteella kolmenlaisiin alueisiin, joiden saves-
pitoisuudet olivat 1) alle 30 %, 2) 30–60 % ja 3) yli
60 %. Täsmäviljelyn käsittelyvyöhykkeiden määrit-
tämisessä tarvitaan savespitoisuuden lisäksi tietoa
muista maalajitteista, ravinteista ja orgaanisen ainek-
sen määrästä. Tässä esitetyllä menetelmällä käsitte-
lyvyöhykkeet voidaan tuottaa numeerisesti, jolloin
niitä pystytään käyttämään tietokonepohjaisissa täs-
mäviljelyjärjestelmissä.
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