FERTILIZING EXPERIMENTS WITH ANHYDROUS AMMONIA AT KOTKANIEMI

YRJÖ PESSI, JORMA SYVÄLAHTI, AUVO LESKELÄ and MIKKO YLÄNEN

Rikkihappo Oy, Helsinki

Received May, 28, 1971

Abstract. On spring cereals and in fertilization in connection with the sowing of winter cereals the effectiveness of ammonia is comparable to that of calcium ammonium nitrate. In tests that were arranged at Rikkihappo Oy's experimental farm Kotkaniemi it was established that anhydrous ammonia given in connection with spring cereal fertilization and autumn cereal earthing is equal to CAN in effect. 16 tests were carried out during a period of five years using placement fertilization the soil being silty clay in most cases. Differences did not occur in the grain yield, the 1000-grain number hl-weight or in the protein content of the grain crop. Urea proved to be less effective than the two other fertilizers.

The usage of anhydrous ammonia as a straight nitrogen fertilizer had a good start in the USA in the 1950's. This method of using nitrogen in an anhydrous form has also been investigated in many European countries, namely France, England, and Denmark (Anon. 1968). Especially in Denmark the usage of ammonia has increased rapidly, and in 1967— 68 about 95 000 tons of anhydrous ammonia was used rapidly as a fertilizer (Anon. 1969), and the figure is still going up.

Anhydrous ammonia (NH_3) contains 82.2 % nitrogen (N). Ammonia is usually a gas but under sufficient pressure it is possible to keep it liquid. While the temperature varies from 0° to + 30° C the necessary pressure varies within 3.4 to 10.9 kg/cm². Owing to this, the ammonia storage and transport equipment have to meet certain requirements. When the ammonia is discharged from the application equipment it immediately turns into gas and gets fixed into the soil.

The only application method for ammonia is injection. In its effectiveness as a fertilizer ammonia has proved to be equal to other nitrogen fertilizers (SALONEN 1967, COOKE 1968, JANSSON 1966, VAN BURG 1969). The equipment necessary for storage and injection, however, requires more capital than is needed in the use of bagged goods. How profitable the usage of ammonia is greatly depends on the distance of transportation, the kind of soil on the farm, the climatic conditions and the size of the farm (BUCHNER 1966).

Ammonia is not a suitable fertilizer for grassland (VAN BURG 1966, VAN BURG et al. 1967). In connection with the injection the roots of the plants are damaged and earthing can seldom be carried out properly. Nor is ammonia suitable for winter cereals in spring because it may uproot the plants in connection with the injection (VAN BURG et al. 1967). Autumn injection is often too risky in Western Europe because of larger N-losses in mild and wet winters. Under certain conditions, however, autumn application might be successful (VAN BURG 1969).

In Finland anhydrous ammonia has been used only in experiments. Fertilizing experiments with ammonia have been carried out on the Kotkaniemi experimental farm at Vihti, the total number of experiments being sixteen during five years, 1966—70. The experiments have been made with spring and winter cereals. The experiments have been carried out with a Danish Marsk Stig apparatus which is easy to use and has a satisfactory injection accuracy. When the experiments were started the tank of the machine was replaced by gas bottles filled with ammonia in order to perform fertilization to a depth of 15 cm and make the ammonia fix perfectly into the soil. The working of the cultivator at the back of the machine is weak.

The precipitations and the mean temperatures of the test years (1965-70) are given in Table 1.

Table 1. Climatic conditions at Vihti during the growing seasons 1965-70.

	32.3	24.5	75.4	74.3	71.3	277.8	
 1970	26.4	20.3	130.4	34.1	61.8	273.0	
1969	21.6	15.5	45.3	40.1	95.9	218.4	
1968	70.5	30.6	67.1	111.4	74.4	354.0	
1967	51.9	21.8	27.8	142.1	53.3	296.9	
1966	15.1	40.7	74.9	28.3	77.7	236.7	
1965	8.3	18.1	106.9	90.0	65.0	288.3	
	v	VI	VII	VIII	IX	Total	

Precipitation per month in mm.

Mean temperature per month in °C

	v	VI	VII	VIII	IX	Mean value (V—IX)	
1965	7.7	16.0	14.6	13.4	11.6	12.66	
1966	9.4	17.9	17.9	13.8	7.9	13.38	
1967	10.1	14.7	17.6	15.2	10.5	13.62	
1968	7.4	16.2	14.5	15.3	10.0	12.68	
1969	8.7	15.3	16.2	15.2	9.6	13.00	
 1970	9.3	16.2	16.0	14.4	9.2	13.00	
Mean value	8.8	16.0	16.1	14.5	9.8	13.04	

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		The follow Treatment	67—68. So bed prepa 68—69. So 69—70. So preparat ing table	 7-68. Soil type sandy and silty clay. Soil analysis in 1967: pH 5.8, Ca 2 100, P 10.0 and K 315 mg/l. Fertilization in connection of the preparation 1 000 kg/ha compound fertilizer (15-20-15). Test made with Pekka ryc. Size of test plot 5 × 25 m. 3 replicates. 8-69. Soil type silty sandy clay. Soil analysis in 1967: pH 5.7, Ca 2 430, P 4.0 and K 290 mg/l. Fertilization in connection with bed preparation 800 kg/ha PK-fertilizer (2-17-15). Test made with Linna wheat. Size of test plot 5 × 50 m. 4 replicates. 9-70. Soil type loam. Soil analysis in 1967: pH 5.8, Ca 2 770, P 2.0 and K 100 mg/l. Fertilization in connection with seed-bed preparation 800 kg/ha PK-fertilizer (2-17-15). Test made with Pekka ryc. Size of test plot 7.5 × 40 m. 4 replicates. a) -70. Soil type loam. Soil analysis in 1967: pH 5.8, Ca 2 770, P 2.0 and K 100 mg/l. Fertilization in connection with seed-bed preparation 800 kg/ha PK-fertilizer (2-17-15). Test made with Pekka ryc. Size of test plot 7.5 × 40 m. 4 replicates. a) at ble of experiments conforms with the year 1969. In 1966–68 the amount of nitrogen (N) given to the crop was 150 kg/ha, in 1970 164 kg/ha. Average grain yield Average grain yield (2 experiments) (wheat + ryc) (3 experiments) (wheat + ryc) (4 experiments) (3 experiments) (wheat + ryc) 	vyc 2 >> nd silty clay. Soi a compound fe dy clay. Soil an a PK-fertilizer (2	ye 5 \times ay. Soil und fer soil ana tilizer ($($ is in 19 is in 19 is in 20 vith the with the in in in in in	× 25 m. 2 replicate bil analysis in 1967; F ertilizer (15-20-15 malysis in 1967; pH 5 (2-17-15). Test m (967; pH 5.8, Ca 2 7 -17-15). Test made the year 1969. In 196 in 1969 162 kg/ha, ii Average grain yield Rye Rye	replica in 1967: 967: pH 50. Test 59. Test 69. In 1 69. In 1 rest mad 69. In 1 rest mad 60. In 1 rest	 rye 5 × 25 m. 2 replicates in both experiments. rye 5 × 25 m. 2 replicates in both experiments. lay. Soil analysis in 1967; pH 5.8, Ca 2 100, P 10.0 ound fertilizer (15-20-15). Test made with Pekka Soil analysis in 1967; pH 5.8, Ca 2 770, P 2.0 and K 100 mg er (2-17-15). Test made with Pekka rye. Size of n with the year 1969. In 1966–68 the amount of ni in 1969 162 kg/ha, in 1970 164 kg/ha. Average grain yield eat Rye Average Loc 	th expe th expe vi Linna vi Linna be amou 64 kg/hi 64 kg/hi erve	e and Nisu w riments. h Pekka ryc. 4.0 and K 29 wheat. Size o vheat. Size o size of test p mt of nitroge a. Lodging	nd K 31 ye. Size 290 mg e of test t plot 7 ogen (N ng ng	Size of test p 5 mg/l. Fertil of test plot 5 g/l. Fertilizatić plot 5 × 50 n zation in com 5 × 40 m. 4 r 5 × 40 m. 4 r 1 given to the HI-weight kg	st plot: ertilizati ti 5×2 : zation in 50 m. 4. 4 replu the cro the cro ght	 kg/ha compound fertilizer (15-25-10). Test made with Pekka rye and Nisu wheat. Size of test plot: wheat 5 × 30 m, rye 5 × 25 m. 2 replicates in both experiments. nalysis in 1967; pH 5.8, Ca 2 100, P 10.0 and K 315 mg/l. Fertilization in connection ration 1 000 kg/ha compound fertilizer (15-20-15). Test made with Pekka rye. Size of test plot 5 × 25 m. 3 replicates. oil type silty sandy clay. Soil analysis in 1967; pH 5.8, Ca 2 430, P 4.0 and K 290 mg/l. Fertilization in connection with aration 800 kg/ha PK-fertilizer (2-17-15). Test made with Linna wheat. Size of test plot 5 × 25 m. 3 replicates. oil type loam. Soil analysis in 1967; pH 5.3, Ca 2 430, P 4.0 and K 290 mg/l. Fertilization in connection with aration 800 kg/ha PK-fertilizer (2-17-15). Test made with Linna wheat. Size of test plot 5 × 50 m. 4 replicates. oil type loam. Soil analysis in 1967; pH 5.8, Ca 2 770, P 2.0 and K 100 mg/l. Fertilization in connection with seed-bed in 800 kg/ha PK-fertilizer (2-17-15). Test made with Pkka rye. Size of test plot 7.5 × 40 m. 4 replicates. of experiments conforms with the year 1969. In 1966-68 the amount of nitrogen (N) given to the crop was 150 kg/ha, in 1960 l62 kg/ha, in 1970 l64 kg/ha. Average grain yield Mheat Rye Average Lodging HI-weight 1000 g.w. (2 experiments) (3 experiments) (wheat + rye) % 6 kg 	< 30 necti on w on w eed-b kg/h) kg/h
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Res			-	kg/ha	rel.	kg/ha	rel.	kg/ha	rel.	70 Wheat	Rye	Wheat		Wheat	Rye
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ults	1. PK-fei 800 kg	rtilizer (2—17– /ha in autumn + nitrogen	-15) in calcium												
$\begin{array}{llllllllllllllllllllllllllllllllllll$			ammoni in spring	um nitrate	3 290	100	2 930	100	3 070	100	0	84	80.4	72.7	36.6	25.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$				in in	3 360	102	3 070	105	3 180	104	c	81	80.7	73.2	35.8	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				rogen in as ammonia,	4											
 * + nitrogen as calc. amm. nitrate in autumn 3 240 98 2 990 102 3 090 101 0 76 80.6 73.8 36.5 			1/2 in spr amm. nit	ing as calc. trate	3 120	95	3 010	103	3 050	66	0	77	80.2	73.1	36.9	24.8
autumn 3 240 98 2 990 102 3 090 101 0 76 80.6 73.8 36.5 » + nitrogen as ammonia		4. »		as calc.												
» + nitrogen as ammonia			autumn	nave III	3 240	98	2 990	102	3 090	101	0	76	80.6	73.8	36.5	27.1
				as ammonia		automotion of	hulestine -		allow make	out stitute			100 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			

F-value (wheat + rye) = 1.26 $s\overline{x} = 1.92 \%$

he following table of experiments conforms with the year 1969. In 1967 the amou the figure was 180 kg N/h Grain yield Lod barley + wheat bar average w kg/ha rel. av PK-fertilizer (2-17-15) in autumn PK-fertilizer (2-17-15) in autumn * 3510 100 * + 78 kg N/ha in ammonium nitrate in spring 3510 100	unt of nitrogen given to the crop was 150 kg ia. ging-% Hl-weight 1000 g.w. rley + kg g wheat wheat barley wheat barley wheat	N/ha, in 1968 Protein % barley + wheat average
kg/ha rel. ilizer (2–17–15) in autumn + 156 kg N/ha calcium ammonium nitrate in spring + 78 kg N/ha in ammonia, autumn	barley wheat barley	averag
PK-fertilizer (2-17-15) in autumn + 156 kg N/ha calcium ammonium nitrate in spring * + 78 kg N/ha in ammonia, autumn		
in spring 3 510 100		
\rightarrow + 10 kg I//ha III ammonia, autumn	26 68.1 83.7 37.9 36.2	12.52
+ 78 kg N/ha in calc. amm. nitr. in spring 3 800 108	28 68.8 83.9 37.2 35.7	11.85
3. » + 78 kg N/ha in ammonia, autumn + 78 kg N/ha in ammonia, spring 3 870 110 25	25 68.8 83.8 41.2 34.6	11.82
3 860 110	70.5 84.1 42.0	11.15
"	22 69.6 84.5 41.3 36.0	

that of calcium ammonium nitrate or even better, similarly on spring wheat and barley (Table 3). No differences can be seen in the hl-weights, in the 1 000 grain weights or in the crude protein. When comparing ammonia, calcium ammonium nitrate and urea

800 kg/ha, nitrogen in different forms in 1966 75 kg/ha (calcium ammonium nitrate 2 % and urea 6 % too large compared with ammonia). Wheat: Soil type sandy clay. Soil analysis in 1967: pH 5.9, Ca 2400, P 4.0 and K 190 mg/l. Fertilization in spring with PK-fertilizer (2-17-10) Table 4. Comparison between anhydrous ammonia, calcium ammonium nitrate and urea on spring cereals in 1966-69. 1967 137 kg/ha, 1969 90 kg/ha, 1969 87 kg/ha. Test made with Svenno. Size of test plot 10×120 m. 2 replicates Barley: Soil type silty clay. Soil analysis in 1967: pH 5.8, Ca 2300, P 3.0 and K 215 mg/l. Fertilization in spring PK-fertilizer (2-17-15)

					Grain yield	yield				
Treatment	1966	9	1967	1	1968	8	1969		Average	gc
	kg/ha	rel.	kg/ha	rel.	kg/ha	rel.	kg/ha	rel.	kg/ha	rel.
Wheat										
1. No nitrogen	2 000	100	2 160	100	1 300	100	1 470	100	1 730	100
2. Ammonia, drilling	2 250	113	3 540	164	2 960	228	2 540	172	2 820	163
3. Calcium ammonium nitrate, drilling	2 410	121	3 590	166	3 250	250	2 610	177	2 970	172
4. Urea, drilling	1 790	60	3 490	162	3 110	239	2 190	149	2 650	153
Barley										
1. No nitrogen	300	100	1 520	100	1 110	100			980	100
2. Ammonia, drilling	2 200	733	3 030	199	3 120	280			2 780	284
3. Calcium ammonium nitrate, drilling	2 000	667	2 670	176	2 830	255			2 500	255
4. Urea, drilling	1 060	353	2 320	153	3 010	271			2 130	217
5. Calcium ammonium nitrate, broadcast	1 510	503	2 400	158	2 990	269			2 300	234
	In	In 1966	In	In 1967	In	In 1968	In	In 1969		
Grain yields, wheat:	F = 2 $s_x = 8$.	2.50 8.38 %	F = 11.62** $s_{\overline{x}} = 6.36\%$	11.62** 6.36 %	F = 46. $s_{x} = 5.$	46.83***	F = 20.75* $s_{x} = 5.18^{\circ}$	20.75* 5.18 %		
Grain yields, barley: (Treatments 2—5)	$F = 53.30^{**}$ $s_{\overline{x}} = 4.14\%$	53.30** 4.14 %	F = 6. sr = 4.	6.57 4.80 %	$\mathbf{F} = 0.$ $\mathbf{s_x^-} = 5.$	0.62 5.10 %				

(Tables 4 and 5) on wheat, ammonia gave a 5 % and urea an 11 % lower yield than calcium ammonium nitrate. On barley ammonia gave an 11 % higher yield than calcium ammonium nitrate and urea a 15 % weaker yield than calcium ammonium nitrate. Especially in 1966 urea gave a poor yield. As to the components, such as falling number

		l
39.		l
69—69.		l
-99		l
19		l
F		l
s.		l
al		l
ere		l
0	(8)	l
ing	6-68)	l
pri	-90	l
1 S	961	l
10	2	l
ca	car	l
ur	(y	l
p	IS	l
monium nitrate and urea on spring cereals in 19	6—69), barley 3 years (y	l
te	3	I
tra	x	l
nit	rle	I
В	ba	l
in	-	l
on	-69	l
B	1	l
an	966	l
В	16	l
iu	years 19	l
alc	yea	ŀ
3	years (y	ŀ
ia,	ar	l
on	ye	l
B	t 4	l
an	ea	l
IS	vh	l
rol		ŀ
yd	ne	
-		l
1	al	
anl	e val	
of anl	age val	
cts of anl	verage values: wheat 4	
ffects of anl	average val	
effects of anl	are average val	
en effects of anl	ts are average val	
ween effects of anl	sults are average val	
between effects of anl	results are average val	
n between effects of anl	he results are average val	
ison between effects of anl	The results are average val	
arison between effects of anl	The results are average val	
nparison between effects of anl	The results are average val	
Comparison between effects of anl	The results are average val	
Comparison between effects of anl	The results are average val	
5. Comparison between effects of anl	The results are average val	
ble 5. Comparison between effects of anl	The results are average val	
able 5. Comparison between effects of anl	The results are average val	

kg/ha rel. % kg Wheat 1. No nitrogen 1. 730 100 0 2. Annonia, drilling 2.820 163 30.5 78.4		60	(#methane			
1 730 100 0 2 820 163 30.5			number)	%**) 1966 1969	1966	1969
1 730 100 0 2 820 163 30.5						
2 820 163 30.5		34.4	248	11.47	5.60	5.90
0 070 170 01 0		36.3	243	12.97	5.65	5.85
7.10 117 016.7		36.5	278	13.85	5.80	5.95
		36.0	271	13.72	5.80	5.85
Barley						
I. No nitrogen 980 100 0 63		38.0		11.50		
20.0		40.0		10.70		
12.5		39.7		10.40		
4. Urea, placement 2 130 217 7.5 62.8	5 62.8	38.6		11.25		
10						

and protein content, having an effect on the crop quality there are no differences between different fertilizers, nor are there any differences in the changes of the soil pH.

The crop yields obtained with pea-oats shown in Table 6 are the same in the cases of ammonia and compound fertilizer and additional nitrogen given in spring.

Table 6. Experiment with anhydrous ammonia on pea-oats mixture. Soil type clayey sand and silt. Soil analysis in 1967: pH 6.4, Ca 1 600, P 24.0 and K 470 mg/l. In spring 500 kg compound fertilizer (15-25-10) by drilling + 200 kg/ha calcium nitrate by broadcasting on shoots. Test made with peaoats mixture (Pendek + Kalle). Size of test plot 5 × 30 m. 4 replicates.

Treatment	Grain	yield	Lodging	
	kg/ha	rel.	%	
1. 75 kg N/ha as NH3 previous autumn	3 059	100	95	
2. Only spring fertilization	3 037	99	95	

Test plot was so heavily fertilized in spring (500 kg/ha compound fertilizer (15-20-15) + 200 kg/ha calcium nitrate) that ammonia used in autumn did not have an increasing effect on the crop.

F-value = 0.05

 $S_{x}^{-} = 9.70\%$

REFERENCES

Anon. 1968. Review of Liquid Nitrogen Fertilizer Developments and Usage. Nitrogen No. 44, 15-20, 36. London.

Anon. 1969. Fra forsøgene med flygende ammoniak 1961-68. Gødningen No. 2: 27-32. København.

BUCHNER, A. 1966. Die Aussichten der Anwendung von wasserfreien Ammoniak im Bundesgebiet. Landwirtsch. Forsch. 19: 185—195.

VAN BURG, P. F. J. 1966. Versuchsergebnisse der D
üngung von Acker und Gr
ünland mit fl
üssigem Ammoniak. Ibrd. 19: 163—184.

— VON BRAKEL, G. D. & SCHEPERS, J. H. 1967a. The agricultural value of anhydrous ammonia on grassland: experiments 1963—65. Netherlands nitrogen technical bulletin No. 2: 1—31.

—»— 1967b. The agricultural value of anhydrous ammonia on arable land: experiments 1963—66. Ibrd. No. 3: 1—39.

—»— 1969. The Agronomic Value of Anhydrous Ammonia in Western Europe. Outlook Agr. 6: 55—9. COOKE, G. W. 1968. Rothamsted experimental station. Report for 1968, part 1: 38—62.

JANSSON, L. S. 1966. Aktuella synpunkter på flytande ammoniak som kvävegödselmedel. Växt-näringsnytt 4: 1—8.

SALONEN, M. 1967. Ammoniakki typpilannoitteena. Koetoim. ja Käyt. 24: 5, 7.

SELOSTUS

NESTEMÄISEN AMMONIAKIN LANNOITUSKOKEIDEN TULOKSIA

Yrjö Pessi, Jorma Syvälahti, Auvo Leskelä ja Mikko Ylänen

Rikkihappo Oy, Helsinki

Kevätviljojen lannoituksessa sekä syysviljojen kylvömuokkauksen yhteydessä annettavassa lannoituksessa on nestemäinen ammoniakki osoittautunut Rikkihappo Oy:n Kotkaniemen koetilalla vaikutukseltaan kalkkiammonsalpietarin veroiseksi. Viitenä vuotena on järjestetty sijoituslannoitusta käyttäen 16 koetta maalajin ollessa useimmissa kokeissa hiesusavea. Eroavuutta ei ole esiintynyt jyväsadon määrässä, 1000-jyvän ja hehtolitran painossa eikä jyväsadon valkuaispitoisuudessa. Urea osoittautui vaikutukseltaan molempia lannoitteita huonommaksi.