European species of the subgenus *Brachylinnophila* (Diptera: Limoniidae)

Jaroslav Starý & Herbert Reusch

The subgenus *Brachylinnophila* Alexander, 1966 is transferred from *Neo-limmomyia* Séguy, 1937 in *Dicranophragma* Osten Sacken, 1860. The latter is elevated to genus rank. Three European species are redescribed, viz. *Dicranophragma (Brachylinnophila) nemorale* (Meigen, 1818), comb. n., *D. (B.) separatum* (Walker, 1848), comb. n. and *D. (B.) adjunctum* (Walker, 1848), comb. n. Lectotypes of *D. (B.) separatum* and *D. (B.) adjunctum* are designated. Male and female terminalia of the three species are illustrated, and their distributions are outlined.

J. Starý, Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacky University, tr. Svobody 26, CZ-771 46 Olomouc, Czech Republic; E-mail: stary@prfnw.upol.cz

H. Reusch, BAL – Bureau for Applied Limnology and Landscape Ecology, Wellendorf 30, D-29562 Suhlendorf, Germany; E-mail: herbert.reusch@t-online.de

Received 28 June 2007, accepted 1 November 2007

1. Introduction

Brachylinnophila was erected by Alexander (1966a) as a subgenus of *Limnophila* Macquart, 1834 for *L. brevifurca* Osten Sacken, 1860 (type species of *Brachylinnophila*), from Canada and USA, and some other species, including two occurring in Europe, *Limnophila nemoralis* (Meigen, 1818) and *L. adjuncta* (Walker, 1848). Later, Savchenko (e.g. 1979, 1983, 1986) transferred the subgenus *Brachylinnophila* in *Neo-limmomyia* Séguy, 1937, which he restored as a valid genus. This shift in classification was based on some characters present in both *Neo-limmomyia* and *Brachylinnophila* and absent in most other genera of the subfamily Limnophilinae. In particular, the terminal section of R₄ is longer than R₁ in the two taxa and in alignment with the rest of R₁, there is a tendency to re-

duction of the cell M₁, and the interbases of the male terminalia are present (cf. Savchenko 1986). *Brachylinnophila* comprises currently 11 species from the Nearctic, Palaeartic and Oriental regions (Oosterbroek 2007). The monotypic *Mixolimnomyia* Savchenko, 1979, with *N. (M.) rufula* Savchenko, 1979, from the Caucasus, has been considered another subgenus of *Neo-limmomyia*.

In addition to the two European species, *Neo-limmomyia (Brachylinnophila) nemoralis* and *N. (B.) adjuncta*, both commonly reported in the literature, Edwards (1921, 1938) commented on additional forms of uncertain status. Of these, *N. (B.) separata* (Walker, 1848) and *N. (B.) minuscula* (Edwards, 1921) were recently accepted as separate species, based on external characters (Stubbs 1997). However, these two names did not appear as valid species in the Brit-
ish Checklist (Stubbs 1998). *N. (B.) separata* was newly recorded in Germany by Reusch & Oosterbroek (2000) and Reusch et al. (2004). Previously, it was mentioned from Ukraine (Savchenko 1986: 325), with some doubts about its species status.

The aim of this paper was: (1) to check the status of the three forms, *N. (B.) nemoralis*, *N. (B.) separata* and *N. (B.) adjuncta*, and, if they are confirmed as valid species, to present their distinguishing characters, and (2) to examine the types of *N. (B.) separata* and *N. (B.) adjuncta* from the Natural History Museum, London, and to fix them accordingly to stabilise the current concept of the names.

The present examination has revealed that the three forms are specifically distinct, being distinguished by external characters, such as the body colouration, wing venation and wing pattern, and, as shown herewith, by both the male and female terminalia. The distinctions in the structure of the male terminalia are slight but constant, and are, surprisingly, supported by convincing female differences in the size of the spermathecae. The redescriptions are presented below. The lectotypes of *N. (B.) separata* and *N. (B.) adjuncta* are designated.

The type material of *N. (B.) nemoralis* was not studied, but the bicoloured appearance of the species, with a light grey thorax and pale brown abdomen, a character unique within European Limnophilinae, is clearly apparent from the original description (Meigen 1818). Other forms mentioned by Edwards (1938) and Stubbs (1997) were not revised, nor could they be recognised in the limited Scottish material available, and are here retained in the synonymy of *N. (B.) nemoralis* based on the current classification (Stubbs 1998, Oosterbroek 2007).

Acronyms of museums and collections used in the text are as follows: BMNH – The Natural History Museum [formerly British Museum (Natural History)], London, England, UK; HRS – Collection of Herbert Reusch, Suhlendorf, Germany; JSO – Collection of J. Starý, Olomouc, Czech Republic.

Colour characters of species are described from dry-mounted specimens. Unless otherwise stated in the sections on Material examined, the material under study is dry-mounted.

2. Systematic position of Brachylinnophila

The male terminalia of various species more or less closely related to *Brachylinnophila* were examined. This examination included *Limnophila (Dicranophragma) fuscovaria* Osten Sacken, 1860 (type species of *Dicranophragma* Osten Sacken, 1860), from Canada and USA, and *L. (D.) formosa* Alexander, 1920, from the Russian Far East, Japan and Taiwan. *Dicranophragma* has currently 35 Nearctic, East Palearctic, Oriental and Afrotropic species and subspecies, with a marked concentration of the species in the Oriental region (Oosterbroek 2007). The wing pattern of these species is conspicuous, consisting of several larger markings at the anterior margin and additional spots and dots, thus resembling the condition in the nominotypical subgenus of *Limnophila* Macquart, 1834 and the genus *Eloepophila* Rondani, 1856. They differ from them and other limnophilins by the presence of a supernumerary cross-vein in the cell R₁. However, the male terminalia of *Dicranophragma* are similar to those of *Brachylinnophila* to an extent that leaves no doubt that the two are congeneric despite the very different general appearance [for *formosa*, see Savchenko & Krivoloutskaya 1976, Fig. 24a, b (male terminalia); other species e.g.: *dorsolineata* (Taiwan), see Alexander 1930, Fig. 26; *laetithorax* (China: Sichuan), see Alexander 1933, Fig. 32; *microspila* (Japan), see Alexander 1953, Fig. 19).

The fact that *Dicranophragma* most closely resembled *Brachylinnophila* in the hypopygial structures was stressed by Alexander (1966a). At that time, both were considered subgenera of *Limnophila*. However, after *Neolimnomyia* was restored as a valid genus by Savchenko (1983), with *Brachylinnophila* included in it as a subgenus, *Dicranophragma* and *Brachylinnophila* were inappropriately separated. The male terminalia of both have the same general plan, with some parts surprisingly similar in structure: the outer gonostylus is slender, smooth, slightly bidentate at apex; the inner gonostylus is fleshy, more or less conical; the interbase is well-developed, generally spoon-like or paddle-like. The single male genital character distinguishing the two taxa seems to be the structure of the
parameres; these are separate in *Brachylinnophila*, whereas, in *Dicranophragma*, they are fused to each other to form a shelf below the aedeagus.

Hence, practically as a by-product, the following change in classification is proposed: *Dicranophragma*, formerly a subgenus of *Linnophila*, is elevated to genus rank, with the subgenera *Dicranophragma* s. str. and *Brachylinnophila* (possibly also *Mixolinomyia*). *Neolinnomyia*, apparently related to *Dicranophragma*, is retained as a separate genus, without subgeneric division.

3. Redescriptions

3.1. Genus *Dicranophragma* Osten Sacken, 1860, stat. nov.

Dicranophragma Osten Sacken 1860: 240 (as subgenus of *Linmophila*; original description). Type species: *Linmophila fuscovaria* Osten Sacken, 1860 (Nearctic), by monotypy. – Alexander 1943: 378, 382 (reprinted 1966b) (as subgenus of *Linmophila*; key, diagnoses of North American species); Alexander 1965: 65 (as subgenus of *Linmophila*; Nearctic catalogue); Alexander & Alexander 1973: 159 (as subgenus of *Linmophila*; Oriental catalogue); Hutson 1980: 74 (as subgenus of *Linmophila*; Afrotropical catalogue); Savchenko et al. 1992: 223 (as subgenus of *Linmophila*; Palaeartic catalogue); Oosterbroek 2007 (as subgenus of *Neolinmomyia*; electronic World catalogue).

3.2. Subgenus *Brachylinnophila* Alexander, 1966

Brachylinnophila Alexander 1966a: 119 (as subgenus of *Linmophila*; original description). Type species: *Linmophila brevifurca* Osten Sacken, 1860 (Nearctic), by original designation. – Alexander & Alexander 1973: 159 (as subgenus of *Linmophila*; Oriental catalogue); Savchenko 1986: 318, 323 (as subgenus of *Neolinmomyia*; key, diagnosis); Savchenko 1989: 94, 95 (as subgenus of *Neolinmomyia*; key, diagnosis); Savchenko et al. 1992: 224 (as subgenus of *Neoli

3.3. *Dicranophragma (Brachylinnophila) nemorale* (Meigen, 1818), comb. n. (Figs 1a, d, g)

Limnobia nemoralis Meigen 1818: 126 (original description).

Limnophila nemoralis: de Meijere 1921: 77 (redescription), Text-fig. 14 (wing), Pl. 7, Fig. 114 (male terminalia); Edwards 1921: 224 (diagnosis); Pierre 1924: 124, 127 (key, diagnosis), Figs 492 (wing), 499 (male terminalia); Nielsen 1925: 85 (diagnosis), Fig. 80 (wing); Czízek 1931: 135, 137 (key, diagnosis), Figs 78a–b (male terminalia, wing); Edwards 1938: 89 (as subgenus “Pilaria?”; diagnosis), Pl. 3, Fig. 17 (wing).

Neolinmomyia (Brachylinnophila) nemoralis: Savchenko 1978: 65 (note), Fig. 2 (male terminalia); Savchenko 1986: 324 (redescription), Figs 162/3 (wing), 166/3 (male terminalia); Savchenko et al. 1992: 225 (Palaeartic catalogue); Stubbs 1997: 8–9 (in error as *Neolinmomyia*; key), Figs (wing); Podenas et al. 2006, Figs XVI.b (wing), 54.3 (wing), 54.4 (male terminalia); Oosterbroek 2007 (electronic World catalogue).

Limnobia leucophaea Meigen 1818: 127 (original description).

Limnobia plebeia Meigen 1818: 127 (original description).

Limnobia inclusa Walker 1848: 41 (original description).

Limnophila nemoralis var. collina Edwards 1921: 224 (original diagnosis).

Limnophila nemoralis var. minuscula Edwards 1921: 224 (original diagnosis).

Limnophilia (Pilaria?) nemoralis var. minuscula: Edwards 1938: 90 (diagnosis).

Neolinmomyia (Brachylinnophila) minuscula: Stubbs 1997: 8–9 (in error as *Neolinmomyia*; key), Figs (wing).

Limnophila nemoralis var. quadrata Edwards 1921: 224 (original diagnosis).

Limnophilia (Pilaria?) nemoralis var. quadrata: Edwards 1938: 90 (diagnosis).

Diagnosis. General colouration light grey on thorax, pale brown on abdomen. Wing narrow, with poorly distinct stigma. M₁ and M₂ much shorter than their petiole. Male terminalia with distal lower part of aedeagus long and sinuous. Female terminalia with large spermthecae. Body length 6.0–8.5 mm, wing length 6.0–9.5 mm.

Redescription. Male. Head light grey. Antenna moderate in length, reaching to about mid coxa, yellow at base, from flagellomere 2 darkened towards tip. Flagellomeres generally ovoid, progressively narrower. Longest verticils about three times as long as their respective flagellomeres.

Thorax light grey with slight bluish tinge, sometimes with four poorly distinct longitudinal stripes on prescutum. Wing comparatively narrow, almost four times as long as broad, tinged yellowish, with poorly distinct stigma; other markings only indicated by somewhat darker veins. Venation: R₅ more than twice its length beyond origin of R₂₃; M₁ and M₂ much shorter than their petiole, half length of the latter or less (exceptionally cell M₁ lacking on one wing). Legs yellow.

Abdomen generally pale brown, with setosity moderate; segment 8 darkened. Male terminalia (Figs 1a, d): Gonocoxite comparatively long and slender, cylindrical. Outer gonostylus generally slender, yet stouter than in other two species, moderately and more or less evenly arched, pale
proximally, darkly pigmented in distal half, apex shortly bidentate. Inner gonostylus fleshy, conical. Interbase generally spoon-like or paddle-like. Paramere moderately long, rather stout. Aedeagus bipartite distally in lateral view; upper part generally rounded, lower part much longer and more slender, slightly sinuous.

Female resembling male in general appearance. Verticils shorter, about twice as long as their respective flagellomeres. Abdominal segment 8 not darkened. Female terminalia with internal structures as in Fig. 1g. Vaginal apodeme (genital fork) moderately long and rather broad. Sperrmathecae large, pale, ovoid.

Discussion. *D. (B.) nemorale* is distinctive by its bicoloured appearance, having a light grey thorax and a pale brown abdomen, and having narrow wings. In the structure of the male terminalia, it is characterised, above all, by the outer gonostylus (stouter than in *separatum* and *adjunctum*, moderately arched, pale proximally) and the aedeagus (lower distal part long and sinusuous) (Figs 1a, d). The female terminalia have large, ovoid spermathecae (Fig. 1g). Although the external characters show closer affinities of *D. (B.) nemorale* to *D. (B.) separatum*, placing *D. (B.) adjunctum* somewhat apart based on the wing venation and wing pattern, genital features indicate a somewhat more isolated position of *D. (B.) nemorale*.

Distribution. *D. (B.) nemorale* appears to be widely distributed in the Palaeartic region, including Europe, North Africa, Middle Asia, West and East Siberia, Mongolia and the Russian Far East (for details, see Oosterbroek 2007). In contrast to *D. (B.) separatum*, it is mostly associated with lower altitudes, but the two species largely overlap in this respect (see also under *separatum*). Occurrence of *D. (B.) nemorale* at 1,200 m a.s.l. in the Bulagian Pirin Mts should be emphasised (see Material examined).

3.4. *Dicranophragma (Brachylimnophila) separatum* (Walker, 1848), comb. n. (Figs 1b, e, h)

Limnobia separata Walker 1848: 56 (original description).

Neolimnomyia (Brachylimnophila) *separata*: Stubbs 1997: 8–9 (in error as *Neolimnophilia*; key), Fig. (wing); Oosterbroek 2007 (electronic World catalogue).

Diagnosis. General colouration dark greyish brown. Wing comparatively broad, with poorly distinct stigma. M₁ and M₂ much shorter than their petiole. Male terminalia with both distal parts of aedeagus short. Female terminalia with very small spermathecae. Body length 5.0–7.5 mm, wing length 5.5–8.5 mm.

Redescription. Male. Head dark grey. Antenna moderate in length, reaching to about mid coxa, mostly dark brown throughout. Flagellomeres generally ovoid, progressively narrower. Longest verticils about three times as long as their respective flagellomeres.

Thorax dark greyish brown, sometimes with four poorly distinct longitudinal stripes on prescutum. Wing rather broad, about three times as long as broad, tinged greyish, without any pattern except for poorly distinct stigma. Venation: R₃ more than twice its length beyond origin of R₂₄; M₁ and M₂ much shorter than their petiole, half length of the latter or less (exceptionally cell M₃ lacking on one wing). Legs obscure yellow, with tips of femora infuscated.

Abdomen generally dark greyish brown, sometimes more brownish, with conspicuous setosity, long and suberect. Male terminalia (Figs 1b, e): Gonocoxite comparatively long and slender, cylindrical. Outer gonostylus more slender than that of *D. (B.) nemorale*, arched rather in distal half, darkly pigmented throughout, apex shortly bidentate. Inner gonostylus fleshy and conical. Interbase generally spoon-like or paddle-like. Paramere moderately long, more slender than that of *D. (B.) nemorale*. Aedeagus bipartite distally in lateral view, both parts short and subacute at tips, lower one broader than upper one.

Female resembling male in general appearance. Verticils shorter, about twice as long as their respective flagellomeres. Wing slightly narrower. Female terminalia with internal structures as in Fig. 1h. Vaginal apodeme (genital fork) longer and more slender than that of *D. (B.) nemorale*. Spermathecae very small, darkly pigmented, nearly spherical.

“One of Walkers / series so named. / Edw”,
“Limnobia / separata, ♂ / Walker. / (Type).”
(hand-written), “Holotype of / Limnobia separata
/ Walker 1848” (hand-written), “BMNH(E) # 247770” (printed), “Type” (green-marked cir-
cular label, printed), “HOLO- / TYPE.” (red-
marked circular label, printed). Labelled by the
present authors as the lectotype ("LECTOTYPE / Limnobia / separata Walker ♂ / J. Starý & H.
Reusch 2006”, printed red label) and identified as
Dicranophragma (Brachylimnophila) separa-
tum. The specimen is micro-pinned on a stage
(white matter), with right antenna broken off (ex-
cept for basal segments), only femur and tibia of
mid right leg present, and with distal halves of
both wings missing; apex of abdomen cut off.
Terminalia dissected by the present authors
and placed in a sealed plastic tube with glycerine,
packed with the specimen. According to N. Wyatt
(e-mail comm.) this is the only type of Limnobia
separata in BMNH, which seems to be confirmed
by Edwards (1938: 90) who likewise commented
on the single “Walker’s type of separata...” (er-
roously “from Finland”; Finnmark is a province of
Norway). On the other hand, the note by Ed-
wards on the reverse side of one label (see above)
suggests that more specimens were available (or
the printed note was intended for a different pur-
pose, and only misused by Edwards). There is no
statement about the number of specimens in the
description by Walker (1848). Hence, the type
specimen examined is designated here as the
lectotype to maintain the concept of the name in
case additional specimens may be found to exist
(cf. Recommendation 73F of ICZN 1999).

Other material examined. Bulgaria: Pirin
Mts, Bandera (over 2,000 m), 21.VII.1987, 4 ♂,
1 ♀, 22.VII.1987, 2 ♂, 3 ♀ (J. Starý leg.) (JSO).
Czech Republic: Bohemia: Šumava Mts, Horská
Kvilda, 5.VII.1992, 1 ♂, 10.VII.1992, 1 ♂ (at
light); Šumava Mts, “Jezerní slat”, 7.VII.1992, 2
♂; Šumava Mts, Borová Lada, 17.VIII.1968, 1
♂; Šumava Mts, Pekná, Vltava shores (750 m
a.s.l.), 4.VI.2004, 1 ♂, 1 ♀; Radostin, Malé
Dařko (620 m a.s.l.), 23.VIII.1981, 1 ♂ (all J.
Starý leg.) (JSO). Moravia: Jeseníky Mts, Rejvíz
(750 m a.s.l.), peat-bog, 5.VI.1967, 1 ♂,
4.VIII.2004, 1 ♂ (at light); Jeseníky Mts,
Dětřichov nr. Jeseník, 27.V.1969, 1 ♂; Jeseníky
Mts, Velký Kotel, 23.VI.1967, 1 ♂; Jeseníky
Mts, Praděd, Bílá Opava valley (900–1,050 m
a.s.l.), 14.VII.1994, 1 ♂, 1 ♀, 26.VII.1994, 1 ♂;
Jeseníky Mts, Kouty nad Desnou, Divoká Desná
valley, “Zámčisko” (970 m a.s.l.), 14.VI.2004, 1
♂ (at light), 8.VI.2004, 2 ♂ (at light),
27.VII.2006, 4 ♂ (at light); Dráhová Loučka,
“Vaňovský zlěb”, 8 km N, 18.V.1989, 1 ♂;
Jílová nr. Olomouc, 14.VIII.1968, 1 ♂; Krčmaň
nr. Olomouc, 5.VII.1977, 1 ♂; Lazniki nr.
Přerov, 17.V.1992, 1 ♂, 9.VI.1992, 1 ♂; Morav-
skoleské Beskydy Mts, Prostřední Bečva (600
m a.s.l.), 30.VII.1992, 1 ♂ (all J. Starý leg.)
(JSO). Germany: Baden-Württemberg: Rohn-
bachtal nr. Enzklästerle/Schwarzwald (700 m
Honau (470 m a.s.l.), 12.VIII.1998, 1 ♂ (R.
Brinkmann leg.) (HRS, in ethanol). Bayern:
Röthenbach, Hoher Tauchberg nr. Halblech/
Ostallgäu (1,100 m a.s.l.), 30.VI.2000, 2 ♂ (A.
Dorn & A. Weinzierl leg.); Benninger Ried nr.
Memmingen (600 m a.s.l.), 15.–20.VI.2003, 3 ♀
(emergence trap) (S. Wiedenbrug leg.) (HRS, in
ethanol). Mecklenburg-Vorpommern: Putbus/
Rügen (20 m a.s.l.), 16.VI.1989, 3 ♂, 1 ♀;
Lietzow/Rügen (30 m a.s.l.), 19.VI.1989, 1 ♂
(all R. Heiss leg.) (HRS, in ethanol). Niedersachsen:
Aschau nr. Beedenbostel (50 m a.s.l.),
31.VII.1991, 1 ♂; Ortze nr. Müden (55 m a.s.l.),
2.VI.1993, 1 ♂; Steinkuhlenbergbach nr. Salz-
gitter-Osterlinde (130 m a.s.l.), 6.VII.1994, 1 ♂
(all H. Reusch leg.); Ortze nr. Poitzen (58 m),
7.VI.1999, 3 ♂, 2 ♀ (R. Brinkmann leg.) (HRS,
in ethanol). Sachsen-Anhalt: Selke nr. Straß-
berg/Harz (450 m), 30.VII.2001, 2 ♂, 1 ♀ (R.
Bellstedt leg.) (HRS, in ethanol). Schleswig-Hol-
stein: Unterer Schierenseebach nr. Hohenhude
(7 m a.s.l.), 1.VII–24.VIII.1987, 22 ♂; 23.V–
19.VIII.1988, 47 ♂, 30 ♀; 29.VI.–27.VII.1989,
6 ♂, 1 ♀; Bille nr. Aurühle (11 m a.s.l.),
24.Vi.1994, 1 ♂; Bille nr. Sachsenwaldau (20 m
a.s.l.), 24.VI.1994, 2 ♂; Mühlenau nr. Alt-
mühlendorf (20 m a.s.l.), 14.VII.1994, 1 ♂, 1 ♀;
Ratzeburg (10 m a.s.l.), 18.VIII.1994, 2 ♂;
Vosskaten (50 m a.s.l.), 18.VIII.1994, 1 ♂;
Barnitz nr. Kretholz (30 m), 28.VII.1994, 1 ♂;
Fuhlenu nr. Himmelreich (20 m a.s.l.),
14.VII.1999, 2 ♂, 2 ♀, 28.VI.2003, 1 ♂ (all R.
Brinkmann leg.) (HRS, in ethanol). Thüringen:
Friedrichsroda (425 m a.s.l.), 17.vii.1991, 1 ♂
(R. Heiss leg.); Schweina-Oberlauf nr. Schweina
Material examined) vary in both the body colouration and the outline of the wings. Some have the wings narrower (yet broader than those of *nemorale*), and the body shows a difference between the dark grey thorax and predominantly brown abdomen (the latter sometimes banded with dark brown), resembling thus somewhat darker specimens of *D. (B.) nemorale*. The antennae of all these specimens are more or less uniformly dark (occasionally, the first flagellomere is slightly paler than both the following flagellomeres and the basal segments), and the tips of the femora are infuscated. In the structure of the male terminalia, *D. (B.) separatum* is somewhat similar to *D. (B.) adjunctum*, but the outer gonostylus is darker and less curved before the apex, the parameres are longer and the two distal parts of the aedeagus unequal in shape (Figs 1b, e). The female terminalia have very small spermathecae, nearly spherical (Fig. 1h), thus clearly distinct from the other two species.

Distribution. So far the species was only recorded in Great Britain, Germany and, somewhat questionably, in the Ukraine (Oosterbroek 2007). The record from the Ukraine is most probably right, and the species is here newly recorded for Bulgaria, Czech Republic, Slovakia and Switzerland. *D. (B.) separatum* has been considered a mountainous form, but a number of lowland records are known from Germany, as well as the syntopic occurrence of *D. (B.) nemorale* and *D. (B.) separatum* (see Material examined).

3.5. *Dicranophragma (Brachylinnophila) adjunctum* (Walker, 1848), comb. n.

(Figs 1c, f, i)

Limnobia adjuncta Walker 1848: 40 (original description).

Limnophila (Pilaria?) *adjuncta*: Edwards 1938: 90 (diagnosis), Pl. 3, Fig. 16 (wing).

Neolimnomyia (Brachylinnophila) *adjuncta*: Savchenko 1986: 326 (redescription), Figs 162/4 (wing), 166/4 (male terminalia); Savchenko et al. 1992: 225 (Palaeartic catalogue); Stubbs 1997: 8–9 (in error as *Neolimnophila*; key), Fig. (wing); Podenas et al. 2006, Figs XVI.f (male terminalia), 54.1 (wing), 54.2 (male terminalia); Oosterbroek 2007 (electronic World catalogue).
Limnophila axillaris Strolb 1906: 413 (original description).

Limnophila axillaris var. brevifurcata Strolb 1906: 414 (original diagnosis).

Limnophila dimidiata de Meijere 1918: 132 (original description).

Limnophila dimidiata: de Meijere 1921: 72 (redescription). Text-fig. 8 (wing). Pl. 6, Figs 109a–b (male terminalia); Pierre 1924: 128 (diagnosis), Figs 506 (wing), 511 (male terminalia).

Limnophila nemoralis var. noscibilis Edwards 1921: 225 (original diagnosis).

Diagnosis. General colouration greyish brown. Wing narrow, with distinct stigma and other spots or seams. M1 and M2 subequal in length to their petiole. Male terminalia with both distal parts of acedeagus short. Female terminalia with spermathecae moderately large. Body length 5.0–9.0, wing length 5.5–9.5 mm.

Redescription. Head grey. Antenna moderate in length, reaching to about mid coxa, brown at base, darkened distally. Flagellomeres generally ovoid, progressively narrower. Longest verticils about three times as long as their respective flagellomeres.

Thorax grey, sometimes with four poorly distinct longitudinal stripes on prescutum. Wing comparatively narrow, almost four times as long as broad, tinged greyish. Stigma distinct, even if not especially pronounced, with other spots or seams at origin of Rs and so-called cord, i.e. at basal section of R5, r–m, basal section of M1 and m–cu. Venation: R5, less than twice its length beyond origin of R5+3; M1 and M2 subequal in length to their petiole. Legs obscure yellow.

Abdomen brown to dark greyish brown, with setosity moderate. Male terminalia (Figs 1c, f): Gonocoxite comparatively long and slender, cylindrical. Outer gonostylus very slender, almost straight proximally, considerably curved before apex, slightly pigmented throughout, apex shortly bidentate. Inner gonostylus fleshy, conical. Interbase generally spoon-like or paddle-like. Paramere shorter and than that of D. (B.) segregatum. Aedeagus bipartite distally in lateral view, both parts short, subacute at tips and subequal in shape.

Female resembling male in general appearance. Verticils shorter than in male, about twice as long as their respective flagellomeres. Female terminalia with internal structures as in Fig. 1i. Vaginal apodeme (genital fork) much as in D. (B.) nemore. Spermathecae intermediate in size between those of D. (B.) nemore and D. (B.) separatum, darkly pigmented, ovoid.

Type material examined. In describing Limnobia adjuncta, Walker (1848: 40) only stated: “England. From Mr. Walker’s collection.” Lectotype ♂ (present designation): England (F. Walker leg.) (BMNH), labelled “adjuncta” (hand-written), “Pres. by / F. Walker / 56. 50.” (hand-written), “Holotype of/ Limnobia adjuncta / Walker, 1848 / England” (hand-written), “BMNH(E) # / 235032” (printed). “Type” (green-margined circular label, printed, with hand-written inscription “Limnobia adjuncta”), “HOLO–/ TYPE” (red-margined circular label, printed). Labelled by the present authors as the lectotype (“LECTOTYPE / Limnobia / adjuncta Walker / J. Stary & H. Reusch 2006”, printed, red label) and identified as Diceranophragma (Brachylinnophila) adjunctum. The specimen is “micro-pin”ed (with rather a tip of normal pin) on a triangular celluloid point, with apex of left antenna broken off, left mid leg and parts of right fore and hind legs present; apex of abdomen cut off. Terminalia dissected by the present authors and placed in a sealed plastic tube with glycerine, pinned with the specimen. According to N. Wyatt (e-mail comm.) this is the only type of Limnobia adjuncta in BMNH. Since, however, as usually, there is no statement about the number of specimens in the description by Walker (1848), the type specimen examined is designated here as the lectotype to maintain the concept of the name in case additional specimens may be found to exist (cf. Recommendation 73F of ICZN 1999).

Discussion. This is a very distinctive species, which differs from both D. (B.) nemorale and D. (B.) separatum by a distinct wing pattern and some features in the wing venation (R₃ less than twice its length beyond origin of R₂, M₁ and M₂ subequal in length to their petiole). The male terminalia, generally similar to those of D. (B.) separatum, have a very slender outer gonostylus, considerably curved before the apex, the parameres shorter and the two distal parts of the aedeagus subequall in shape (Figs 1c, f). The spermathecae are intermediate in size between those of D. (B.) nemorale and D. (B.) separatum (Fig. 1i). The specimens from Greece (Crete) (see Material examined) have M₁ and M₂ somewhat shorter than their petiole, often half as long.

Distribution. D. (B.) adjunctum has atlantic-mediterranean distribution, ranging to North Caucasus and Georgia (Transcaucasia) (for details, see Oosterbroek 2007). The westernmost record is from Ireland, the northernmost from Lithuania. The species is here newly recorded for Greece (Crete) and Luxembourg.

Acknowledgements. For the loan of the type specimens of Limnobia separata Walker and L. adjuncta Walker, we are much indebted to N. P. Wyatt (BMNH). For the gift of specimens, we thank the following: R. Bellstedt (Gotha, Germany), T. Berger (Potsdam, Germany), R. Brinkmann (Schlesen, Germany), Antonie Dom (Landshut, Germany), C. Dufour (Muséum d’histoire naturelle, Neuchâtel, Switzerland), R. Heiss (Frankfurt/ Oder, Germany), A. M. Hutson (then BMNH), O. König (Krumbach, Germany), T. Meineke (Ebergötzen, Germany), M. Meyer (Natural History Museum of Luxembourg), A. Weinzierl (Landshut, Germany), W. Zimmermann (Weimar, Germany). The English text was checked and improved by Beate and Stephen Loftus (Wyoming, New South Wales, Australia). The work was supported by grant MSM6198959212 for the senior author.

References