
Ethnologia Fennica vol. 43 • 93

Understanding software development
in practice

Suenson, Espen 2015. How Computer Programmers

Work – Understanding Software Development in Prac-

tice. Turku: Department of Information Technologies,

Åbo Akademi. 287 pp. Diss. Ill. ISBN 978-952-12-

3225-1. ISSN 1239-1883.

During the last few decades, computer program-
ming and software development have become
important practices in societies more or less all
over the world. New stakeholders and organisa-
tions have risen and software now underpins in-
frastructures, services and products from such
diverse areas as avionics and farming to enter-
tainment and gaming. How to understand the
development of products within these areas and
the practices that are taking place has been the
aim of Espen Suenson’s doctoral thesis, How Com-
puter Programmers Work – Understanding Software
Development in Practice. The thesis is framed as
a scholarly combination of software engineer-
ing and European ethnology, making it a hybrid
thesis, which has been rather uncommon in the
academic world. Usually academic theses and dis-
sertations are evaluated and assessed within the
framework of separate disciplines. In this case,
the work has a cross-disciplinary scope, and the
form of the thesis has given rise to new oppor-
tunities but also a few challenges.

Software as a concept and as a phenomenon
has been receiving attention from scholars with-
in the social and cultural sciences for some time
now. Often the approaches have been cross-dis-
ciplinary in nature, drawing on theoretical and
methodological traditions from various areas.

Early forerunners like Marshall McLuhan and
Friedrich Kittler have inspired bold and some-
what speculative scholarly endeavours. Several
studies have been related to upcoming fields like
science and technology studies, media studies or
software studies, with the last of these fields be-
ing epitomised by the work of such scholars as
Matthew Fuller and Lev Manovich. Suenson men-
tions some of these scholarly works in his book,
but then decides to take another research route.

Suenson’s ambition has been to broaden the
scopes of the disciplines of ethnology and soft-
ware engineering by embracing a quite narrow
theoretical aspect of ethnology, combining it with
traditional hermeneutical theory and applying it
to the practices of software development. This
ambition to broaden the horizons and scopes of
several disciplines, as well as the very form of the
thesis, does produce some challenges. It requires
an open-minded reading and approach, one which
overlooks the fact that Suenson does not analyse
or problematise how several social dimensions
play out in his research material. This makes the
work quite unusual among other recent ethno-
logical studies on the workplaces, technology and
professional practices. But Suenson’s book also
offers rewards, through which hybrid knowledge
is produced and exchanged in unexpected ways.

Methodologically, Suenson has chosen not to
use theory in order to form new concepts and de-
velop novel theoretical approaches. Instead, he
applies cultural theory and hermeneutical theory
to his empirical material in a way that to some ex-
tent is similar to compatibility tests of the world
of programming. This is a logic through which
some selected theories are tested to see if they
work together with a specific empirical material.

94 • Ethnologia Fennica vol. 43

With the help of Hans-Georg Gadamer’s theo-
ries and philosophical works on hermeneutics and
rhetorics, as well as cultural form theory inspired
mainly by the Danish scholar Thomas Højrup, he
deals with several specific dimensions of comput-
er programming practices. Throughout the thesis,
Suenson tackles the knowledge gap between the
ways that the production of software has been
described and analysed and what is really going
on in the work practices involving computer pro-
gramming and software development. The aim of
the thesis is not to directly change or improve the
studied programming practices, but instead to fa-
cilitate a better understanding of and better ways
to describe ‘how computer programmers work’.

The book is based on a comparative analysis of
two very different forms of programming prac-
tices, namely game programming and safety crit-
ical programming. A smaller game development
company called Tribeflame is analysed as well as
larger enterprises working with safety critical
programming. The latter kind of programming is
used when malfunctions and failures pertaining
to the produced software could have very serious
consequences, which requires certain procedures
of assessment and control during the develop-
ment process.

One strength of the book is the way that pro-
gramming practice is discussed in the case stud-
ies, especially in the parts about Tribeflame.
Chapter five on game programming and Tribe-
flame is an ethnographically interesting part of
the work. Here, Suenson’s ethnographic method
becomes concrete, and the physical and material
context of programming practices is presented.
Aspects of programming practices within this em-
pirical field are highlighted and scrutinised. From
an ethnological and ethnographic point of view,
the contexts, situations and sites of this specific
industry could, however, have been even more
thoroughly examined. It would also have been in-
teresting to include more ethnographic material
from the world of safety critical programming.

Suenson make comparisons between the com-
panies and industries, but especially the more
detailed ethnographic material from Tribeflame
tends to disappear among general assumptions

about game programming. Some more thorough
discussions and comparisons of, including more
ethnographic details regarding, the very different
fields of software production examined in this
book would have made the work stronger from
an ethnological standpoint. Suenson mentions
that game development is connected to other cre-
ative practices. But he provides no further com-
parisons or analyses of this industrial context.
Instead, game programming is related to safety
critical programming in totally different indus-
trial contexts. With more discussion based on
ethnographic details and comparisons, he would
have provided readers with a better understand-
ing of the specific programming practices of com-
panies like Tribeflame. For example, he stops the
discussion after stating that it is important for
game developers to make products that are ‘fun’
and that companies working with safety critical
programming have to develop ‘safe’ products. Our
ethnological understanding of software develop-
ment would have benefitted if he had scrutinised
in more detail what is really meant by ‘fun’ and
‘safe’ and how these concepts are manifested in
everyday programming practices in different in-
dustries. In the present analyses, notions of ‘fun’
and ‘safe’ become secondary to the companies’
primary aim, which according to Suenson is to
make ‘their products useful’ (p. 203).

Since digital culture and practices, such as
computer programming, are spreading on a huge
scale more or less globally today, it is important
for studies to test new combinations and take
new roads to knowledge. Suenson has started to
tread one of these roads. The end of the road is
still somewhere beyond the horizon. However, at
the beginning of the book Suenson clearly states
his specific goal for the thesis, and he reaches it.
This book contributes to our knowledge about
software programming in an interesting way,
but there is still much work to be done and many
roads for researchers to tread in order to better
understand the implications of software and how
it is designed, developed, utilised, imagined and
transformed.

Robert Willim

