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Abstract 

Computational requirements for data processing at different stages of the radiology value chain are 
increasing. Cone beam computed tomography (CBCT) is a diagnostic imaging technique used in dental 
and extremity imaging, involving a highly demanding image reconstruction task. In turn, artificial intelli-
gence (AI) assisted diagnostics are becoming increasingly popular, thus increasing the use of computa-
tion resources. Furthermore, the need for fully independent imaging units outside radiology depart-
ments and with remotely performed diagnostics emphasize the need for wireless connectivity between 
the imaging unit and hospital infrastructure. In this feasibility study, we propose an approach based on a 
distributed edge-cloud computing platform, consisting of small-scale local edge nodes, edge servers with 
traditional cloud resources to perform data processing tasks in radiology. We are interested in the use of 
local computing resources with Graphics Processing Units (GPUs), in our case Jetson Xavier NX, for host-
ing the algorithms for two use-cases, namely image reconstruction in cone beam computed tomography 
and AI-assisted cancer detection from mammographic images. Particularly, we wanted to determine the 
technical requirements for local edge computing platform for these two tasks and whether CBCT image 
reconstruction and breast cancer detection tasks are possible in a diagnostically acceptable time frame. 
We validated the use-cases and the proposed edge computing platform in two stages. First, the algo-
rithms were validated use-case-wise by comparing the computing performance of the edge nodes 
against a reference setup (regular workstation). Second, we performed qualitative evaluation on the 
edge computing platform by running the algorithms as nanoservices. Our results, obtained through real-
life prototyping, indicate that it is possible and technically feasible to run both reconstruction and AI-
assisted image analysis functions in a diagnostically acceptable computing time. Furthermore, based on 
the qualitative evaluation, we confirmed that the local edge computing capacity can be scaled up and 
down during runtime by adding or removing edge devices without the need for manual reconfigura-
tions. We also found all previously implemented software components to be transferable as such. Over-
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all, the results are promising and help in developing future applications, e.g., in mobile imaging scenari-
os, where such a platform is beneficial. 

Keywords: radiology, image processing, health technology, telemedicine, cloud computing, internet of 
things 

Introduction 

Background 

Modern medical imaging devices produce substan-
tial amounts of data for clinical decision-making. 
For example, the use of diagnostic imaging has 
been steadily increasing. A 78% increase in com-
puted tomography (CT) examinations and a grow-
ing trend of 12% in mammography imaging are 
reported for Europe between 2004 and 2011 [1]. 
This growing trend also imposes a higher computa-
tional load for post-imaging operations, such as 
image reconstruction and image processing. Post-
imaging operations are usually performed with 
device-manufacturer provided hardware and the 
resulting images are then sent to the picture ar-
chiving and communication system (PACS). Com-
plementary image assessment, such as computer-
assisted detection (CAD), can be carried out with 
proprietary applications on diagnostic work-
stations or servers with PACS access. The applica-
tions enable clinical assessment for medical imag-
ing outcomes and are often manufacturer neutral 
for supporting e.g., dental imaging applications [2] 
and CAD systems for breast imaging [3]. 

According to literature, considerable efforts are 
usually required when integrating artificial intelli-
gence (AI) solutions, e.g., decision support sys-
tems, to complement the well-established clinical 
workflow [4]. Modern AI solutions for image pro-
cessing and computer-aided diagnostics typically 
require a computational platform with parallel 
processing capabilities and industrial-grade 
Graphics Processing Units (GPUs). Commercial 

solutions, which are operated locally within hospi-
tal premises, are usually offered as expensive high-
end computing devices (single units) which may 
have limited capabilities for extensive workload, 
e.g., images routed from a larger catchment area 
or hospital district. Cloud services, on the other 
hand, provide high computational scalability, but 
come with a high burden on the network and, 
consequently, higher energy consumption [5]. 

Edge computing, however, pushes computing 
tasks from the network core to the network edge, 
closer to the data sources [6]. Therefore, it helps 
improve performance and network failure toler-
ance while reducing network traffic, which are 
crucial qualities with low-capacity and/or unrelia-
ble uplink connections [5,7]. With the help of edge 
computing, many key e-health functions can be 
provided regardless of the low-quality and unreli-
able connection to centralized servers, enabling, 
e.g., remote areas to obtain real-time medical 
diagnoses [8]. Edge computing could potentially be 
a viable solution to remove the need, e.g., for ded-
icated reconstruction units for each imaging sys-
tem by making post-imaging operations cloud-
native. This avoids the above-mentioned pitfalls of 
centralized cloud computing. 

In this study, we explore the feasibility of using 
edge computing for post-imaging operations, 
namely image reconstruction in cone-beam com-
puted tomography (CBCT) and AI-assisted image 
analysis in breast cancer detection and mammog-
raphy. Our goal is to determine the minimal tech-
nical requirements for local edge computing plat-
form for hosting these operations and to assess if 
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the operations can be performed in a diagnostical-
ly acceptable time frame. 

Related work  

Currently, only a few edge computing studies exist 
for medical image processing and analysis. The 
capabilities of edge computing have mostly been 
investigated in the remote health monitoring set-
ting [5]. The literature on utilizing edge computing 
for the use cases chosen for this feasibility study, 
i.e., 1) Cone-beam computed tomography recon-
struction and 2) AI-based breast cancer detection, 
is scarce. 

Computed tomography image reconstruction: To 
our knowledge, no studies yet exist for investiga-
tion of locally deployed edge computing in CBCT 
reconstruction, which is particularly challenging to 
the vast size of raw data. An edge computation-
based CT reconstruction has been the topic of a 
few studies. Chen et al. developed an edge-based 
multi-thread reconstruction Gridrec algorithm for 
high-resolution synchrotron radiation CT. They 
utilized low-cost GPU edge devices, which enabled 
a remarkable speedup of elevenfold compared to 
serial Gridrec algorithm [9]. In the study by Zhang 
et al., a 3-D reconstruction method for medical CT 
images utilizing deep learning (DL) was developed 
using edge computing infrastructure [8]. 

AI-based medical image assessment: Previous 
work exploring edge computing for breast cancer 
assessment using mammography image data could 
not be found. However, there are few papers de-
scribing the study of enabling technologies such as 

model optimization and hardware acceleration 
[10] and a blockchain-enabled learning model [11] 
with application examples in the medical imaging 
domain. Algorithms with low computational cost 
for medical image analysis have also been pro-
posed [12]. Two detection and analysis studies in 
the edge computing context have been conducted 
for colonic neoplasia localization [13], and auto-
mated analysis of colonoscopies [14]. The latter 
utilized a Jetson Xavier NX development microsys-
tem, demonstrating that it can host a real-time 
detection application in terms of computing power 
and speed. 

Aims 

The aim of this study was to investigate the feasi-
bility of local GPU-based edge computing technol-
ogy on image reconstruction and automated as-
sessment of medical images. For this, the 
traditional, well established, workflow (Figure 1a) 
is proposed to be augmented with distributed 
computing functionalities (Figure 1b). For this 
proof-of-concept study, we chose two very differ-
ent use-cases: 1) image reconstruction in volumet-
ric CBCT, and 2) AI-assisted breast cancer detec-
tion from full-field digital mammograms (FFDM) 
using a pre-trained DL model, both tasks being 
computationally demanding. Thus, our research 
question is formulated as follows: Is the use of 
locally deployed edge computing a clinically feasi-
ble solution for the two use-cases? We are particu-
larly interested in whether this technology can 
perform image reconstruction and image assess-
ment in a diagnostically acceptable time frame. 
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Figure 1. Illustration of (a) a traditional clinical imaging workflow, (b) an augmented image processing 
workflow utilizing local edge computation, and (c) proposed edge computing platform and its end-to-
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end connections. The augmented workflow in subfigure b differs for our use-cases. In use-case 1, name-
ly the cone-beam computed tomography (CBCT) reconstruction, we propose a path where projections 
are extracted from the scanner and retrospectively reconstructed utilizing a cluster of local edge nodes. 
In use-case 2, namely the AI-assisted breast cancer detection, the data may originate directly from the 
imaging device or from the Picture Archiving and Communication System (PACS). Imaging parameters 
and for example trained deep learning model weights are shared from cloud storage, where also edge 
computing results are sent. Cloud storage is illustrated as a single cloud but can consist of several serv-
ers for different purposes. In subfigure c, medical imaging data is transferred through a secure file-
sharing protocol (SSHFS). Connections between manager and workers are made through hypertext 
transfer protocol (HTTP) during the deployment. In this work, we have concentrated on the local tier 
system of the three-tier architecture of the edge computing. External workstation in subfigure c serves 
as an interface for viewing functionalities. 

Material and methods 

Use-case 1: Image reconstruction in volumetric 
CBCT 

Data from a diagnostic dental CBCT scanner (Pro-
max 3D Max, Planmeca Group, Helsinki, Finland) 
was used to address the performance of local edge 
computing for CBCT reconstruction. An anthropo-
morphic head X-ray phantom with cervical verte-
brae (Erler-Zimmer GmbH & Co.KG) was scanned 
with a clinical protocol used for the assessment of 
teeth. During acquisition, the scanner collects 400 
projection images with dimensions of 319-by-736 
pixels (height-by-width) from a 210° angular range. 
These measured cone-beam projections were ex-
tracted from the scanner and retrospectively re-
constructed with the Python ASTRA tomography 
toolbox (v1.8, imec-Vision Lab, University of Ant-
werp, CWI, Amsterdam, the Netherlands) [15,16]. 
The traditionally utilized, non-iterative Feldkamp-
Davis-Kress (FDK) algorithm was used for recon-
struction. The reconstructed slices were 1012-by-
612 pixels in size, and the number of slices was 
modified (10, 50, 100, 200) to address the influ-
ence of increasing reconstruction volume on the 
total computation time. Thus, the reconstructed 
volumes were 1012-by-612-by-10, 1012-by-612-

by-50, 1012-by-612-by-100, and 1012-by-612-by-
200 -voxel matrices with an isotropic pixel size of 
200 µm. To increase statistical power, the retro-
spective reconstruction was repeated ten times for 
each of the volumes. 

The local edge computing experiments were con-
ducted on a Jetson Xavier NX microsystem (NVID-
IA, Santa Clara, California, US) with Carmel Arm 
processor and 384-core Volta architecture GPU 
(NVIDIA) with 48 Tensor Cores and 8 GB of GPU 
memory. The operating system used was Linux for 
Tegra (version 32.4.2). The reconstructions were 
validated against a local reconstruction computer 
(reference system) with Intel Xeon E5-1620 pro-
cessor and 3840-core Pascal architecture Quadro 
P6000 GPU (NVIDIA) with 24 GB of GPU memory. 
The operating system was Microsoft Windows 
(version 6.1.7601). 

Use case 2: AI-assisted breast cancer detection 

In the breast cancer detection use-case, data from 
the open Portuguese FFDM dataset [17] was used. 
The dataset comprises of 86 digital mammography 
examinations with 4 standard views, specifically 
left and right mediolateral oblique (MLO) and bi-
lateral craniocaudal (CC) views, with resolution 
4084-by-3328 and 3328-by-2560 (height-by-width) 
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respectively with 14-bit contrast resolution. The 
capturing device detector pixel size was 70 mi-
crons [17]. The dataset has examples of masses, 
calcifications, and architectural distortions. More-
over, we made use of an existing deep learning 
model, namely Globally-Aware Multiple Instance 
Classifier (GMIC) model [18] with model weights, 
trained on the NYU Breast Cancer Screening Da-
taset [19]. The model operates at high resolution 
and simultaneously predicts the presence of be-
nign and malignant findings from 2944-by-1920 
(height-by-width) pixel matrix. As a pre-processing 
step the FFDM MLO and CC views were cropped to 
this size to remove uninformative background 
pixels and meet the model requirements for input 
data. The model consists of three modules: global 
module processing the previously mentioned 
cropped input image, a local module processing 
image patches resulting from the global model via 
region of interest (ROI) extraction and finally a 
fusion module. In the first global network module, 
a feature map is computed, and two saliency maps 
are extracted to obtain information on the benign 
and malignant lesion locations. In the local module 
the extracted ROI patches are further character-
ized by a higher-capacity local network. Lastly, a 
fusion network is used to combine the information 
from the global and the local modules of the mod-
el for final prediction.  The process can be seen as 
comparable to that of a radiologist who considers 
both global and local information to assess the 
mammograms for suspicious findings [18]. 

The computation performance was assessed by 
running the model inference 100 times for a single 
examination with four digital mammograms and 
calculating an average computing time for one 
examination. For the experiments, PyTorch (1.8.0) 
framework [20] was used in implementing the 
model. Moreover, the size of the file containing 

the learnable parameters of the GMIC model was 
approximately 60 MB. 

A local edge computing node Jetson Xavier NX 
microsystem, with equivalent specifications as in 
the first use-case, was used to conduct the exper-
iments. The experiments were validated against a 
high-end workstation (reference system) with 
Ryzen Threadripper processor and 4,608-core Tu-
ring architecture Titan RTX GPU (NVIDIA) with 576 
Tensor Cores and 24 GB of GPU memory. The op-
erating system was Ubuntu (version 20.04 LTS). 

Proposed edge computing platform 

To evaluate the feasibility of the augmented work-
flow (Figure 1b), the studied algorithms, namely 
CBCT reconstruction and breast cancer evaluation, 
were implemented as virtualized Docker-based 
nanoservices [6,21] that can be deployed on a 
swarm of local edge nodes. The implementation 
comprises of several nanoservices to perform the 
functions of specific workflow components. A 
storage service was used to store the imaging re-
sults, i.e., CBCT projections and FFDM, and later, 
the edge computing results to the Hard Disk Drive 
(to be further transferred to the PACS). CBCT re-
construction and breast cancer detection methods 
had their dedicated services, which were included 
in customized Docker container images with their 
software dependencies. These nanoservices were 
deployed in a cluster of local edge nodes, namely 
computing nodes known as workers and a cluster 
head known as the manager node (Figure 1c and 
Table 1). In the experiment, storage (server) ser-
vice was deployed on an Ubuntu 20.04-based Intel 
Core i7 with 8 GB of RAM (Worker 1). Further-
more, the CBCT reconstruction and breast cancer 
evaluation services were deployed on two sepa-
rate GPU-based Jetson Xavier's (Worker 2 and 3).  
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Table 1. Hardware and software resources of the edge computing platform utilized in the feasibility 
study. 

 Hardware Resources Software Resources 

 CPU GPU Memory Storage Operating 
System 

Kernel Docker Docker 
Compose 

Storage Server 
(Worker 1) 

Intel Core i7 
1.6 GHz  
(4 CPU cores) 

 8 GB 250 GB Ubuntu 
20.04 

5.15.0-
46-
genetic 

20.10.1
2 

- 

Breast Cancer 
Detection 
(Worker 2)  

CBCT Image 
Reconstruction 
(Worker 3) 

NVIDIA Car-
mel ARMv8.2  
(6 CPU cores) 

384 
NVIDIA 
CUDA 
cores  
& 48 
Tensor 
cores 

8 GB 128 GB Ubuntu 
18.04 

4.9.201-
tegra 
(L4T 
32.5.2 
with 
Jetpack 
4.5.1) 

20.10.1
8 

- 

Orchestrator 
(Manager) 

Intel Core i5 
1.6 GHz  
(4 CPU cores) 

- 16 GB 500 GB Ubuntu 
22.04 

5.15.0-
48-
generic 

20.10.1
2 

1.29.2 

 

These containerized nanoservices were deployed 
among the workers and orchestrated by Ubuntu 
22.04-based Intel Core i5 with 16 GB of RAM 
(Manager). Furthermore, the storage server was 
built on top of Secure Shell (SSH) protocol and 
shared the data with other services (e.g., compu-
ting resource descriptions) through a secure file-
sharing protocol (SSHFS). Mobile broadband was 
used for communication. Arbitrary event-driven 
software was used to monitor filesystem events, 
e.g., new data placed on the storage server. 

Results 

The validation of the use cases and the proposed 
framework was conducted in two stages. In the 
first stage, the algorithms were validated against a 
reference setup, namely against results from run-
ning the computations on a regular workstation. In 

this stage, the edge computing platform was not 
yet utilized, only the Jetson Xavier’s were em-
ployed in the algorithmic validation. In the second 
stage, the edge computing platform was evaluated 
qualitatively in different scenarios by running the 
previously validated algorithms as nanoservices. 

Algorithmic validation of CBCT reconstruction 

According to our measurements, the edge device 
reduced the computation times for the FDK algo-
rithm for large reconstruction volumes, i.e., when 
the number of slices was 50 or more (Table 2a). 
For a smaller reconstruction volume with ten slic-
es, the local reconstruction PC was 42.44 % faster. 
The longest reconstruction times for the local 
workstation and edge device were 22.91 s and 
10.27 s, respectively. The CBCT reconstruction 
required 3.4 GB GPU memory and 3.0-3.1 GB RAM 
memory on both devices. 
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Table 2. a) Cone-beam computed tomography reconstruction times for the local reconstruction work-
station and the edge-device with algorithm parameters already uploaded from the cloud storage, and b) 
breast cancer evaluation running times for the local workstation and the edge-device with the model 
weights already uploaded from the cloud storage. 

b) Inferring a single examination (with four standard views, namely left and right mediolateral oblique and bilateral crani-
ocaudal views) repeatedly using the Globally-Aware Multiple Instance Classifier (GMIC) model (mean ± standard devia-
tion, N=100) 

Number of images Local workstation (s) Edge device (s) Percentage difference (%) 

4 3.93 ± 1.07 6.80 ± 2.11 53.37 

 

Algorithmic validation of breast cancer detection 

Performing the breast cancer detection on the 
edge device added the processing time by 1.73 
times on average as compared to a local work-
station (Table 2b). Average runtimes were 
3.93±1.07 s and 6.80±2.11 s for the local work-
station and edge device, respectively. Further-
more, the first repetition was costly, taking 7.32 s 
and 27.61 s with the local workstation and edge 
device, respectively. In addition, there was an ad-
ditional time spent on initializations, taking 1.03 s 
with the local workstation and 10.13 s with the 
edge device. The initializations, and operationaliz-
ing of the model, i.e., the inference, on average 
totals 4.96 s for the local workstation and 16.92 s 
for the edge device. Furthermore, running the 
GMIC model inference on both devices reserved 
1.4-1.6 GB of GPU memory and 4.2-4.4 GB of RAM 
memory. 

Integration test and qualitative evaluation of the 
platform 

The experimental local edge setup was qualitative-
ly evaluated by first-hand observation in an inte-
gration test utilizing the proposed setting de-
scribed in the Materials and Methods -section. 
Placing new data into the storage server, was ob-
served to automatically start the use case agnostic 
(e.g., data upload) and use case specific (e.g., 
breast cancer evaluation) nanoservices. Further-
more, plugging one of the nodes to the power 
supply resulted in a pending nanoservice to move 
to execution (or to be available to be executed on 
on-demand basis), and on the other hand, unplug-
ging a node from its power supply did not interfere 
the main service, embodying the characteristics of 
resilience, required, for example, in mobile imag-
ing scenarios, where the composition of the local 
computational cluster may be subject to a change. 
Some overhead was experienced in the interplay 
of the nanoservices. The integration test also gave 
better understanding of the interplay of different 

a) Computation times for the Feldkamp-Davis-Kress (FDK) algorithm (mean ± standard deviation, N=10) 

Number of slices Local workstation (s) Edge device (s) Percentage difference (%) 

10 1.72 ± 0.01 2.45 ± 0.03 42.44 

50 4.84 ± 0.21 4.44 ± 0.09 -8.26 

100 13.29 ± 2.55 6.98 ± 0.13 -47.50 

200 22.91 ± 4.58 10.27 ± 0.43 -55.17 
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services required for post-processing medical im-
aging results. 

Discussion  

Main findings 

Algorithmic validation: This feasibility study 
demonstrated that the utilized edge nodes had 
enough computing resources for CBCT reconstruc-
tion and AI-based image analysis utilizing low-end 
GPU of the Jetson Xavier NX microsystem for per-
forming computations in a diagnostically viable 
time frame. In the breast cancer evaluation con-
text, the initializations and operationalizing of the 
model on average totaled 16.92 s which is a clini-
cally suitable time. For comparison, 146 s unaided 
reading time per examination has been reported 
for a human reader [22]. Performing inference 
separately for each of the images in the examina-
tion on a different process can increase through-
put but will add time spent on the initializations. In 
the reconstruction context, the longest recon-
struction time of 10.27 s on the edge device for 
the largest reconstruction volume would be clini-
cally feasible without disturbing the diagnostic 
workflow as the literature suggests an acceptable 
time to be in the 3 min window [23]. The Jetson 
Xavier also exhibited less variation in reconstruc-
tion times between repetitions in comparison to 
the reference system. The statistical differences 
between the different Jetson Xavier’s in our dis-
posal were not evaluated while it is known that 
slight performance differences may exist [24].  

Integration test: In the integration test stage, mo-
bile network caused some overhead, but other-
wise, based on the qualitative evaluation, the ex-
periment was successful. Our use-cases bound us 
to add only devices with the specific hardware 
(e.g., GPU) and software resources to the swarm, 

and therefore the composition of the computa-
tional cluster cannot be completely arbitrary. 

Considerations related to materials and methods 

 In this study, we focused on CBCT reconstruction, 
which is due to the cone-shaped X-ray radiation 
beam, a three-dimensional image reconstruction 
problem. The proposed platform is not limited 
only to CBCT reconstruction but could be utilized 
also for CT reconstruction. Furthermore, CT is a 
substantially more frequent examination than a 
CBCT, with 649,119 and 19,442 examinations dur-
ing the year 2021 in Finland, respectively [25]. This 
makes it appealing to address the utility of the 
developed platform for CT reconstruction. Com-
parison of the computational requirements is not 
straightforward, as this depends on the size of the 
detector and the number of projections collected. 
However, in both cases there benefits from GPU 
powered computations [26]. 

In the use-case 2, our focus was in performing 
inference on the edge. The application itself could 
have been related to any medical imaging modali-
ty, but we choose breast cancer detection from 
FFDM as out of different modalities, mammogra-
phy retains the highest spatial resolution and 
mammograms are very large pixel matrices, thus 
particularly good for testing how well the utilized 
edge nodes can cope with the task. Moreover, the 
platform can be extended to perform similar com-
putation also, in the same context, for Digital 
Breast Tomosynthesis (DBT) [27] examinations. An 
applicable deep learning model already exists [28]. 
There were 292,486 mammography screening 
examinations during the year 2021 in Finland [25], 
and the amount of DBT examinations is known to 
be increasing (e.g., [27]). 
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Advantages 

In the past, porting software between platforms 
often required reimplementation. In our study, all 
the previously implemented software components 
were transferable as such, only requiring building 
the utilized software libraries for the device to 
make them compatible with the architecture, 
which is a very standard procedure. Though other 
computer vision hardware accelerators, e.g., Field-
Programmable Gate Arrays (FPGAs) and Applica-
tion Specific Integrated Circuits (ASICs) exist, CPU 
and GPU-based solutions have been widely adopt-
ed, as the availability of optimized software com-
ponents, for one, enables fast prototyping [29]. 

On the other hand, the choice of architecture in 
this feasibility study does not limit us in any way. 
The capacity of the proposed system can be easily 
scaled up by simply including additional edge de-
vices of choice in the local computing cluster. Di-
viding the computation into parallel subtasks 
would potentially maximize the benefits of a multi-
node local cluster. The ASTRA functionalities are 
well optimized, already benefiting from distributed 
GPU computing, e.g., message-passing interface 
framework implementation of Simultaneous Itera-
tive Reconstruction Technique (SIRT) [30]. In the 
breast cancer use case, we could further speed up 
the inference by converting our DL models to Ten-
sorRT [31] to better utilize the CUDA computing 
capabilities. Such speed-up would be beneficial, 
for example, if we were to run the inference for all 
the data accumulated to a hospital PACS, though 
there would be a need to do this so that the strain 
on the network would not harm the everyday op-
erations in the hospital environment. 

Overall, processing the data near where it is gen-
erated allows lesser computational needs for indi-
vidual imaging units and resulting in an increased 
overall throughput of the system.  This has a con-

nection to the long-term cost-efficiency of edge 
computing solutions [32]. However, taking use of 
edge computing also introduces costs. Some of the 
specialized hardware can be expensive. Supple-
mental hardware maintenance might also be re-
quired, although the maintenance of dedicated 
software can be managed in a centralized fashion, 
which will effectively reduce overall costs and 
added security. It should be noted that the imag-
ing equipment vendor provided single unit of the 
traditional workflow also cost. In the augmented 
workflow the only GPU powered devices in addi-
tion to the shared edge nodes would be the work-
stations meant for viewing purposes. 

Limitations 

The edge computing platform built for this feasibil-
ity study used mobile broadband for communica-
tion. This might not be realistic for all imaginable 
scenarios. Updating the learnable parameters of a 
deep learning model or the Docker image would 
benefit from better connections. However, a real-
istic test network was outside the scope of this 
study. Moreover, we limited our focus only to a 
local edge computing tier. In the future, we want 
to expand our assessment to fully utilize the three-
tier edge-cloud architecture, where the experi-
mented local edge is just one part of it. An inter-
mediate step towards that goal would be to build 
a test environment, for example, from acquisition 
to reconstruction, and communicating with virtual 
PACS. 

It should be noted that the proposed augmenta-
tion to the reconstruction workflow cannot be 
implemented as such, unless the imaging equip-
ment manufacturers permit access to raw data 
which is often proprietary information. Nonethe-
less, we have examples, e.g., in the Nuclear Medi-
cine domain, where image reconstructions can be 
performed on raw data extractable from the sys-
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tem. For the CBCT computing, a paradigm change 
would be required. For the FFDMs and breast can-
cer evaluation use-case, such technology could be 
more readily employed as the communication is 
between the PACS and edge node (storage ser-
vice). 

Challenges 

 Security and privacy are still considered as one of 
the major obstacles in the development of edge-
empowered healthcare systems. Some of the se-
curity risks that we have identified include, but are 
not limited to, faulty or compromised edge devic-
es, edge services, communication and networks 
infrastructure, and network protocols. Since some 
of the nodes/devices at local and edge tiers can be 
resource-constrained, traditional cloud-based se-
curity and privacy solutions might not be com-
pletely applicable. More lightweight security 
mechanisms should be adopted to address the 
complex security demands of resource-limited 
devices. A good summary of the current research 
in the field of edge computing security can be 
found in [33]. 

As edge devices store and process medical data, 
they must be hardened as any other health infor-
mation system to resist cyberattacks to protect 
sensitive information. Among the malicious attacks 
envisioned in the literature regarding this particu-
lar subfield are attacks intended to affect image 
quality and patient safety, and patient data tam-
pering [34,35]. 

Among the best practices when deploying edge 
computing and alleviating various security risks in 
any environment are sending as few sensitive data 
items as possible outside the local computational 
environment, the use of secure network connec-
tions, encrypting sensitive data, strong authentica-
tion mechanisms, scrutiny in software mainte-

nance, and maintaining security copies of the vital 
data items. 

Edge-computing does not bring only security chal-
lenges but also offers many opportunities. With 
local edge-based solutions we can have better 
control on how widely the sensitive patient data 
needs to be propagated. This applies, for example, 
to the situation where we perform inference on 
the local edge, such as described in the use-case 2. 
The process can be carried out by keeping the 
inferred imaging data local and only the DL pre-
trained model weights are communicated be-
tween the cloud storage and the worker node 
(Figure 1). 

Conclusions and future work 

This article studied the feasibility of local edge-
based post-imaging operations, namely CBCT im-
age reconstruction and AI-assisted image analysis, 
with a goal to assess if these operations can be 
performed in a diagnostically acceptable time 
frame, and to resolve the minimal technical re-
quirements for a local edge computing platform. In 
our edge solution, the centric algorithms were 
encapsulated into virtualized nanoservices fitting 
to a set of pocket-sized edge nodes. Our results, 
obtained through real-life prototyping, indicate 
that it is possible and technically feasible to run 
both reconstruction and image analysis functions 
in a diagnostically viable time frame in our local 
edge solution. Furthermore, we confirmed that 
the local edge computing capacity can be scaled 
up and down during runtime by adding or remov-
ing edge devices without the need for manual 
reconfigurations. The feasibility study from the 
viewpoint of resource and cost-efficiency is left for 
future work. Regarding edge computing security, 
the enabling technology for the most part exists, 
but there is additional work to be done to fully 
utilize it in the medical imaging field. 
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One of the greatest advantages of edge computing 
is related to the additional mobility of diagnostic 
services [8], facilitating e.g., mobile imaging in and 
outside hospitals, allowing, among others, vehicle-
mounted imaging units (e.g., mobile stroke units) 
[36]. Therefore, in the next phases of our work, we 
will focus on system-level optimizations of per-
formance, reliability, and resource-efficiency. 
While this work focused on local edge computing, 
we plan to extend the scope to assess on, e.g., 
what tier of the edge-cloud continuum the recon-
struction and analysis tasks are beneficial to be 
run in different mobile use cases. A particular in-
terest is in considering the availability of computa-
tional resources on different tiers and the quality 
of the connections between the tiers, and their 
effect on selecting the optimal tier for algorithms 
with respect to performance, resource-efficiency, 
energy-efficiency, and security. 
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