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Abstract

It is becoming possible to perform sleep recordings at home with equipment targeted for the regular consumers.
This alleviates the pressures to increase capacity in sleep clinics. The interpretation of the sleep recordings is not
very easy for the laymen and alternative assisting methods should be sought for this. Sonification is a method by
which a phenomenon is converted to a sound for human listeners. This paper describes experiments made for the
sonification of the electric activity of the brain, the electroencephalography (EEG) for the purpose of recognizing
the presence and absence of the necessary refreshing components of sleep, deep sleep and rapid eye movement
(REM) sleep. The methods are based on the calculation of features of the EEG signal which are characteristic to the
deep and REM sleep as well as wakefulness. The features are converted to amplitude modulation functions of
artificial and musical instrument sounds by using mathematical transforms such as Principal Component Analysis
and Linear Discriminant Analysis. The results indicate that modulated sinusoidal signals are not appropriate for the
sonification of sleep EEG but that modulating the sound of musical instruments could be a viable option for making
the recognition of good and bad sleep possible.
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Introduction

The recent developments in the recoding technologies
of physiological signals make it possible to record the
electroencephalogram (EEG) with inexpensive equip-
ment targeted for consumers. It is becoming possible to
consumers to perform polysomnographic sleep studies
at home which was previously possible only for profes-
sionals in sleep clinics. This is good because there is not
enough capacity in the clinics to record and analyze
everybody who is interested in their sleep quality for
various reasons. When a number of people can be satis-
fied with the results of the home sleep analyzers, the
sleep clinics can focus on those patients who need sleep
laboratory level analysis most. The interpretation of
these home recordings is, however, by no means trivial.
Methods are therefore needed to simplify the interpre-
tation of these recordings for the laymen.

The purpose of the recording of EEG during sleep is to
determine objectively how well the subject slept. The
present sleep stage classification [1] divides the sleep-
wakefulness continuum into the following classes: Stage
W (Wakefulness), Stage N1 (NREM 1 sleep, light sleep),
Stage N2 (NREM 2 sleep), Stage N3 (NREM 3 sleep,
deep sleep, slow-wave-sleep, SWS), Stage R (REM sleep,
rapid-eye-movement sleep). The previous sleep stage
classification [2], also used partly in this study, too,
divided the non-REM sleep into stages S1 to S4 and
particularly Stage N3 into two stages S3 and S4 of which
S4 represented the deepest sleep stage. Both classifica-
tions are based on the recording of the EEG, electro-
(EOG)
(EMG). The time course of the changes of the stages

oculography and surface electromyography
during the sleep recording is called the hypnogram.
According to the present knowledge, the normal, re-
storative sleep consists of a sufficient duration of SWS
and REM sleep and it is not disturbed by frequent
awakenings, caused by, e.g. sleep apnea [3, 4, 5].

Stage W is characterized by low amplitude mixed fre-
quency activity (also so-called beta activity in the 16 to
30 Hz range when concentrating on a task) when the
eyes are open and typically trains of 8-13 Hz activity
(alpha activity) recorded in the occipital regions of the
brain when the eyes are closed. Stage N1 contains low
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amplitude mixed frequency EEG activity predominantly
in the 4 to 7 Hz range (theta activity) and slow eye
movements. Stage N2 EEG contains typically trains of
more than 500 ms long sleep spindles of 11 to 16 Hz
activity and so-called K-complexes with a relatively high
amplitude single negative and positive wave deflection
from the base line lasting for more than 500 ms. Stage
N3 consists of waves of frequency 0.5 to 2 Hz and peak-
to-peak amplitude above 75 microvolts, the more dom-
inantly the deeper the sleep is. Stage R EEG can consist
of trains of 2 to 6 Hz triangular waves but they are not
always present making the stage difficult to recognize
based on EEG alone. The stage R is therefore recognized
by the more or less frequent presence of rapid eye
movements and a lowered muscle tone in the chin EMG

[1].

Sonification is a method to use non-speech audio to
convey information or perceptualize data [6]. It makes
use of the fine characteristics of human hearing in mak-
ing sense of audio material. With some training, the
listener can usually make a difference between two
sensory signal recordings better than by observing the
visual waveforms of the signals [5]. In practice, sonifica-
tion means that the input signal is processed in such a
way that is transformed from its original form, mapping
its frequency range to the audible frequency range (20-
20 000 Hz) for human listening. For most applications of
sonification, not all audible band is used as some peo-
ple have difficulty hearing at both ends of the scale.

Sonification [7] is not a new technique. Some experi-
ments were performed already in the 1950’ies and a
patent was granted to a method of the sonification of
multiple physiological signals in 1998 [8]. The Ambient
Intelligence group in the University of Bielefeld has
published several papers on the sonification of the EEG
[9, 10, 11] and they believe that sonification can change
clinical procedures even in the near future [12]. The
methods of EEG sonification have not, however, been
standardized yet and there is still room for innovation
in this area. Sleep sonification has been studied a little,
too. The study of Tulilaulu et al. used a movement sen-
sor signal as the input to the sonification process [13].
This study did not, however aim at so direct use of the
sonification output for determining the sleep quality
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because some random elements were also used to
composing the musical output. Olivan et al. used
straightforward audification of the signals recorded
during sleep [14]. In order to convert the signals to the
audible frequency range, the authors accelerated the
speed by a factor of 200.

The nature of this field is such that purely mathematical
algorithm is not sufficient to yield good results because
listening to the output of the methods is a crucial part
of the method development. Therefore we set out for
some experiments of EEG sonification. The general
objective was to develop a robust method by which
people with no previous experience with EEG and only
little training can listen to the produced sound and
distinguish if the sleep was good or bad. Moreover, the
audio files generated by the proposed methods should
be pleasant to human hearing. These methods must be
independent of the EEG sampling frequency and skip
the technical artifacts characteristic of EEG like muscu-
lar and ocular artefacts.
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Materials and methods
Material

Eight recordings from SIESTA polygraphic data base [15]
were used for our experiments. Four of the recordings
were from normal subjects and four were from subjects
who had a diagnosed anxiety disorder. These recordings
were not selected completely blindly because the visual
inspection of the hypnograms was used to verify that
the recordings were not severely abnormal. Table 1
shows how many epochs of 30 seconds each subject
spent in each sleep stage classified according to the
R&K system [2].

The C4-M1 and 02-M1 derivations were used for the
EEG analysis. EOG activity was analyzed from the Fp1l-
M2 EEG channel.

Table 1. Number of epochs of 30 s of each sleep stage for each subject.

Subject Wakefulness S1 S2 S3 S4 REM Movem  Artifact
1 39 73 519 69 40 221 3 2
2 30 72 535 71 66 173 18 0
3 305 102 322 60 27 141 1 3
4 120 71 314 90 105 182 3 3
5 72 102 426 35 139 220 0 2
6 244 87 396 36 105 102 0 3
7 151 87 454 63 5 200 1 3
8 33 83 578 54 33 171 6 3
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Methods

General

There are three main types of EEG sonification: Audifi-
cation, Parameter Mapping and Model based. Audifica-
tion is probably the simplest and oldest form of sonifi-
cation technique. This technique corresponds to map
(with a certain function) the range of EEG frequency
and amplitude to respective audio frequency range and
amplitude. However, this method has several limita-
tions as it is very difficult to create a good audification
technique that helps to understand essential phenome-
non like for example: lack of sleep quality or epilepsy. In
fact, most of the novel literature found about EEG soni-
fication doesn’t follow this approach as it is considered
obsolete. On the other hand, parameter mapping is
nowadays one the most researched and popular forms
of EEG sonification. Here, extracted parameters, also
called as features extracted from the EEG signal serve
to modulate sound characteristics such as amplitude
and frequency. For last, model based sonification relies
on mathematical or physical models to generate sound
depending on the EEG input data. Although it is raising
in popularity in data sonification, the method is not
optimal for time series data representation like EEG
data. Therefore, the choice for the project development
was parameter mapping which is the most used meth-
od nowadays [7,16,17].

The sonification methods we used can be divided to
two groups. The first group consisted of methods which
required that an automatic sleep stage classification
would be performed first. In the next step each stage
would be converted to a predetermined sound relating
to that class. The amplitude of the sound would be
modulated by the certainty of belonging to that class.

The second group consisted of methods which did not
require this classification. Instead, separate modulation
amplitude values were calculated for the modulation of
the musical instrument sounds for the classes slow
wave sleep, REM sleep and wakefulness using formulas
which had highest output values when the correspond-
ing class was present in the current epoch. The output
of these methods would be the combination sound of
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the sounds associated with each of these three classes
and their amplitude would be weighted by their proba-
bility. In the following the methods in both groups are
described in more detail. Both methods relied on the
extraction of descriptive features and the selection of
these features is explained first. Different variations of
the methods explained here were also tested but they
are not described here to keep this article shorter.

Feature extraction

Feature extraction is a critical part of all pattern recog-
nition systems. In order to obtain the most descriptive
features a number of candidate features were extracted
from the EEG and their power to discriminate the rele-
vant sleep stages were compared. The candidate fea-
tures were Relative Power Density from 6 different EEG
bands: Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-13 Hz),
Sigma (13-16 Hz), Beta (16-30 Hz) and Gamma (30-45
Hz), Vigilance Index (VI), Spectral Asymmetry (SISA),
Spectral Edge Frequency (SEF), Median Frequency (MF),
Slow Wave Index (Slow Wave Index), TWI (Theta Wave
Index), AWI (Alpha Wave Index), total STFT power, band
entropy and the Hjorth Parameters: Activity, Mobility
and Complexity [18]. The band powers were calculated
with the short-time Fourier transform (STFT) in 15 s
epochs such as the other features. A Blackman window
was applied to the EEG signal before the STFT calcula-
tion.

Spectral Edge Frequency (SEF) represents the frequen-
cy, freq, which the range of 0 to freq contains 95% of
the total power of the signal. Median Frequency (MF)
represents the frequency, freq, which the range of 0 to
freq contains 50% of the total power of the signal. The
Vigilance Index indicates is represented by the fraction
of higher frequencies over lower frequencies
(Pgamma+Pbeta)/(Ptheta+Pdelta). Spectral Asymmetry
represents asymmetry of the spectral power from the
left side of the Alpha band and the right side of the
Alpha band: (Pgamma+Pbeta+Psigma-Pdelta-Ptheta) /
(Pgamma+Pbeta+Psigma+Pdelta+Ptheta). Slow Wave
Index (SWI = Pdelta/(Ptheta+Palpha), Theta Wave Index
(TWI = Ptheta/Ptheta+Pdelta) and Alpha Wave Index

(AWI = Palpha/(Ptheta+Pdelta) are indexes that traduce
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different relationships between the lower frequency
bands.

Entropy represents how concentrated the STFT power
is. In other words, if the power is equally distributed
between bands, entropy is maximum while if all power
is concentrated in one band, entropy will be O (total
power organization).

Entropy = L8 _power(l) = log(powsr(f)) (1)

where power (i) represents each band power.

Eight features from Fpl channel were extracted poste-
riorly in order to perform REM sonification: Hjorth pa-
rameters (Activity, Mobility and Complexity), lower,
medium and high frequency band of EOG, signal’s vigi-
lance index and band entropy. Despite that eight fea-
tures were extracted, only Activity was actually used.

Feature selection

As the objective is to separate the SWS and REM sleep
from the other stages, a method was required to com-
pare the performance of the extracted features in this
respect. The best features chosen for non-classification
sonification (SWS and REM) were selected through the
Fisher Ratio (FR). The FR tells how separable two classes
by their respective means and variance. In this feature
selection method, it is assumed that the features have
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Gaussian distributions and the method evaluates how
separable are the two Gaussians. The highest FRs of the
studied features allow maximum distinguishability and
are chosen for posterior non-classification models [19].

A number of plots were dawn in which the features’ FRs
were depicted in pairwise comparisons of class separa-
bility, e.g. REM vs NREM, Awake vs. Sleep etc. In addi-
tion to these plots, the feature outputs were plotted on
the time axis and these plots were compared to the
hypnograms of the same subject. The experiments
showed that generally a FR above one was required to
obtain sufficient separation. These experiments led to
the choice of the following features shown in Table 2.

For the sonification method which did not use a sleep
stage classifier, the feature selection was somewhat
different. It was found out that only one parameter was
not optimal but a formula of combining a few features
worked better. The order of best formulas for SWS
detection was (SWI*Complexity)/(Mobility*Entropy),
(SWI*Complexity)/Entropy, and SWI/Entropy. The best
formula for REM detection was TWI/Activity(Fp1). The
Vigilance Index (VI) appeared to work well for wakeful-
ness detection.

Temporal smoothing of the feature outputs was applied
to avoid too short transitions from one stage to anoth-
er. The outputs were first low-pass filtered with a mov-
ing average filter of order 30 and then with a median
filter of order seven.

Table 2. The most descriptive features in pairwise sleep stage classification (FR >1).

Experiment

Selected features

Awake vs Sleep
Deep sleep vs light sleep
Deep sleep vs Rest
REM vs NREM

Rem vs each other class

Mobility, Delta relative power, Beta Relative Power and SISA
Complexity, Delta Relative Power, Entropy

Mobility, Complexity, Delta Relative Power, SWI, TWI and Entropy

No feature reached FR > 1

Mobility, Delta, Theta and Alpha relative power, SISA, TWI and Entropy
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Sonification method based on sleep stage classifier

Various pairwise sleep classifiers were designed based
on the results of the feature comparisons described
above. The classifiers that were finally taken into use
were the classifiers deep sleep stage S4 vs the rest of
the classes and stage REM vs all other classes. After the
optimal features had been calculated, a Principal Com-
ponent Analysis transform was applied to improve the
classification result. Although dimension reduction was
attempted with PCA, better results were obtained when
all the eigenvectors of the transformed space were
used for classification.

Linear Discriminant Analysis (LDA) was used to project
the outputs of the PCA to a one-dimensional line. The
classification threshold is set to the point where the
classification result is the optimal. This threshold is used
as a parameter for the modulation functions (MFs) used
to amplitude modulate the output sound for SWS and
REM sleep. The MF is called to the range 0..1 with a
sigmoid-like function

¥ = —_ﬂ:w—_;;ﬁ(Z)
. 14 g - TAS

where x is the output of the LDA classifier, th is the
threshold and vy is the resulting modulation function
value. When x is large, the y value approaches one,
whereas y approaches zero when x is small. At the point
of the threshold the modulation function output is 0.5.

The output y was felt to need some smoothing, too.
Therefore these modulation function outputs were low-
pass filtered with a moving average filter of order 40.

Two types of signals were used as “carrier waves” mod-
ulated by the modulation function: sine waves with a
frequency of 400 Hz and jazz music recording. The
sounds were produced separately for REM sleep output
and SWS output.

The classifier using all the 18 extracted features with
PCA and LDA was tested by dividing the 7614 epochs of
recordings from the eight subjects randomly to a train-
ing set of 70 % of the data and test set of 30 % of the
data. The randomization was performed four times.
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Sonification methods based on descriptive features for
SWS, REM sleep and wakefulness

Contrary to the previous method PCA transform and
LDA classifier were not needed. The outputs of the
modulation function were obtained directly from the
following formulas with the addition that they were
scaled to the range 0..1 in a linear fashion. Three musi-
cal instruments, piano to indicate REM, drums to indi-
cate wakefulness and xylophone to indicate SWS were
modulated with different modulation functions and the
outputs were summed together to a stereophonic out-
put as follows:

TWI(2)

Laft channsl = drume = VI(0Z) + planc* =y

(3)

TV (02« Compleity (023

Right channel = drums = VIQZ) + xylophons =

(4)

The 02 channel was preferred over C4 because it pro-
duced slightly better results. Note also the use of the
EOG activity in Fpl in the formula to modulate the pi-
ano sound.

Results

The separation of S4 from the other sleep stages suc-
ceeded with an accuracy of approximately 96 % in the
better 02 channel. This gives a good starting point for
the generation of a modulation function for the SWS.
The separation of the sleep stages S1 and REM was not
very successful and therefore they were combined into
one class in classification. When this was done, the
combined class S1+REM could be separated from the
rest with an accuracy of approximately 93 % in the
better 02 channel.

The success in the generation of a good modulation
function for SWS can be seen by comparing figures 1
and 2 below. Figure 1 is the hypnogram of test subject
number 5. The sleep is normal containing sufficient
amounts of both deep SWS sleep and REM sleep. Figure
3 shows the REM classification modulation function.
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Figure 1. Hypnogram of subject number 5. The classes are 0 = Awake, 1 =S1,2 =52, 3 =53, 4 =S4, 5 = REM. This
hypnogram is the result of a visual scoring by experts and the gold standard to which other results are compared.
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Figure 2. The SWS modulation function generated for subject 5. Note the different horizontal scale to Figure 1
which has 30 s epochs while the epochs are 15 s long in this figure. Note that the modulation function reaches
values close to one during S4 sleep which indicates a desired result.
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Figure 3. The REM modulation function output for subject 5. The time scale is the same as in Figure 2. Note that

the high output values often coincide with the occurrence of stage REM in Figure 1 which indicates a desired re-

sult.

The produced sounds were evaluated subjectively. The
amplitude modulated sinusoidal signal with different
frequencies for REM and SWS outputs indicated the
locations of these sleep stages but they were not pleas-
ant to the ear. Moreover, when the amplitudes of both
output were low, the listener got the impression that
nothing is going on. The experience with the sinusoids
did not encourage to continue their use further.

The outputs consisting of piano, drums and xylophone
were more pleasant to the listener. It was easy to rec-
ognize the phase of the sleep from these recordings. It
may, however, require some training to distinguish
poor sleep from good sleep with this methodology.

Discussion

The experiments provided invaluable insight into the
EEG sonification issue to the authors. For example,
hearing the results of the first more primitive methods
indicated quickly that the modulated sinusoidal signal
output would not be the method of choice approved by
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human listeners. The use of musical instruments made
the listening experience more pleasant. There are,
however, moments in the sound output when no sound
appears to be active which is a somewhat disturbing
phenomenon. Perhaps there should be some back-
ground sound indicating S2, for example to fill these
empty periods.

We are not yet sure that the sleep disorders can be
recognized with the methods described here. Alarms
are usually used to indicate the presence of an alarming
situation but here the listener should observe the ab-
sence of sufficient amount of SWS and REM stage.
Maybe this can somehow be improved in the following
studies.

The number and variety of subjects from whom we
used the recordings was quite small. The number would
not be sufficient to test if disturbed sleep can be distin-
guished from normal sleep, but it was sufficient to rec-
ognize that some of the tested sonification methods do
not work well and that some deserve to be developed
further.
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The sonification method based on classification could
be developed further. The separation of stages S1 and
REM should be improved by extracting more REM re-
lated features from EOG and EMG. If the classifier can
be made reliable enough, it could, in principle speak out
the states in sequence like: “Awake, Stage 1, Stage 1,
Stage 2, Stage 2,... Stage REM, Awake.”. Taking this idea
further could lead to an interpretative statement of the
recording like: “In general the sleep recording con-
tained sufficient amounts of SWS and REM sleep but
slightly too frequent awakenings towards the end of the
recording may have disturbed the sleep somewhat.”
These methods would then not make use of the human
pattern recognition capabilities at all.

Our sonification method differs from [13] by not trying
to reach equally high musical quality at the expense of
more accurate diagnostic quality and repeatability.
Compared to [14] our method aims at making the sleep
stage detection easier to the listener by letting the
computer leave out some irrelevant details from the
produced sound.

Although a lot of experiments were made, we feel that
we are still nearer the beginning than the end. The
methods contain a lot of tunable parameters which can
be adjusted for better performance. We have only
started testing different musical instruments but other
sounds could be tested as well. The instruments which
produce a constant sound during their sound produc-
tion, like an organ, are probably preferred to those
which have a decaying amplitude like an acoustic guitar
as some stages can last for a longish period and the
guitar sound may get attenuated although the sleep
stage continues. After we have made some more pro-
gress with this work, we could think of arranging listen-
ing tests to laymen to see how easily they can be
trained to distinguish poor sleep from good sleep with
sonification.
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