DERIVATION AND THE TWO-LEVEL MODEL

Kristiina Jokinen

Research Unit for Computational Linguistics
University of Helsinki
Hallituskatu 11
SF-00100 Helsinki

Artikkeli kisittelee leksikaalisten sddntdjen esittimiseen kehittiméiini
formalismia, joka voidaan ymmirtdd Koskenniemen (1983)
kaksitasomorfologian laajennukseksi syntaksiin ja semantiikkaan piin.
Formalismin avulla voidaan késitelld leksikaalisten entryjen sisiltimiid
syntaktis-semanttista tietoa, erityisesti sananmuodostuksessa tarvittavia
rajoituksia ja piirteiden periytymistd. Entryjen syntaktis-semanttiset
piirteet on koodattu entryihin templaatteina, ja leksikaaliset sd@dnnot

1. Introduction

The paper presents a formalism to deal with syntactic and semantic
restrictions in word-formation, especially with those found in derivation. The
formalism is based on Jokinen (ms.), and its aim is to provide an extension
to the finite-state morphophonology of Koskenniemi’s Twol-Level Model
(1983). Each lexical entry, ie. a morpheme string, is assigned a set of
templates that encode its syntactic and semantic properties, and a notion of
lexical rule is introduced to determine correspondences between templates of
the entries that stand in a lexical relation. Application of a rule can be

implemented as a finite-state transducer.

2. The Two-Level Model and Derivation

Derivation is governed by formal and lexical restrictions. The former deal
with morphophonological constraints, the latter with syntactic and semantic
compatibility of the derivation. The surface form of a derived word is

determined by the morphophonological rules of the grammar.

In the Two-Level Model (TWOL), formal constraints are described by
continuation classes that determine possible continuations from a morpheme.
However, there are two sources of overgeneration in TWOL. First, a
continuation class can refer back to itself, and thus recursive morpheme
strings are accepted (e.g. hae+r+ut+ur+ut+utta fetch+CUR+CUR+CUR+
CUR+CUR’). Second, continuations based on morphophonological
similarities fail to distinguish between entries that have the same inflectional
properties, but due to semantics, differ in their derivational possibilities (e.g.
stative 3-syllabic TA-verb vilurta feel cold” does not have a causative-
curative derivative *vilir+ wurta ’make someone feel cold’, though the
activity verb of the same morphological type, aserra ’put’, has a regular
curative form aser+utta “make someone put’).

To deal with the lexical constraints, we propose a new type of rule, a
lexical rule, which operates on the syntactic and semantic information
encoded in the entries. Input for a rule consists of lexical entries, ie.
morpheme strings, and the rule determines bi-directional relations between
the entries by relating their morphosyntactic and semantic information.
Lexical rules are separate from the morphophonological ones, and they
transmit the information encoded in the morphemes to word-forms used in
the syntactic analysis.

Phonological realization of a morpheme string is taken care of by
TWOL. Lexical representation is mapped to the correct surface
representation as discussed in Koskenniemi (1983). Well-formedness of a
string is automatically guaranteed in TWOL, and thus we avoid the
completeness problem described by Calder & te Lindert (1987). The overall

picture of TWOL and the proposed extension is presented in Figure 1.

phon. form m u u t 0 a t t a a
TWOL | { | | | | i i 1 |
lex. repr. o u u t T All (t T All v
TWOL l
morph. repr. muutTALl + tTAL + Vv

V Change-in-Loc Caus (Curative!) (Sg3Infl!

Trans "move’ ‘
Lexical rules E
synt./sem. (muntatta (V Change-in-Loc Cur Trans
‘make someone move’ ... Sg3))

Figure 1.

3. The Two-Level Lexicon

Lexical entries in the TWOL lexicon are morpheme strings. Strings of
length one are the stems and the affixes of the language, and their
concatenations correspond to word-forms of the language. Lexical entries are
recursively defined as follows:

If A and B are lexical entries, then A+B is a lexical entry, where +

marks the concatenation of the two entries governed by a lexical rule.
A lexical entry includes information about its morphophonological form (P),
combinatorics (C) and syntactic and semantic properties (S). It is represented
as a triple of the form:

<P, C S>
Morphophonological form is also the lexical representation of an entry, and
it encodes e.g. morphophonological alternations. Combinatorics refers to
concatenation of the morphemes. Each entry is assigned a continuation class
that determines the set of affixes that can be concatenated to the entry in
question. Continuation classes determine morpheme order and they ulso
encode morphophonological selection between a stem and a suffix.

Syntactic and semantic properties associated with an entry are encoded
into a set of template names. A template is an abbreviation for a body of
information, and it refers either to an atomic feature or to a complex feature
structure (cf. Karttunen 1986). A template is referred to by its name.
Lexical rules treat template names as atomic entities, and the inernal
structure of the templates is not “seen’ at the level of word-formation. For
syntactic purposes, however, the names can be compiled into representations
structured for the analysis at that level. This indeterminacy in the
interpretation of the template names is an indication of the flexibility of the
lexicon: the same data base can be interpreted in several ways.

The templates are of two types: feature remplares (f-templates) encode
syntactic and semantic information, and operational templares (o-templates)
encode lexical rules (cf. templates and lexical rules in DPATR. Karttunen

1986). The two types are formally distinguished by an exclamation mark at

1 However, we will often use the short term template instead of template
name. Because lexical rules operate on template names only, so no
misunderstanding is possible.

the end of the name of the o-template. An entry may have sceveral f-
templates, but an o-template always appears alone. F-templates can also
subsume other f-templates, and thus template names have implication
relations like AgSubj > Agentivity, i.e. if an entry has the feature ’agentive
subject’, it also has the feature “agentive’.

Sample entries are given in Figures 2 and 3. Figure 2 presents the
Finnish verb entry for muutta 'move, change, turn into’, and Figure 3 the
continuation class A/V. Capital letters mark morphophonemes, and
parentheses are used to differentiate between various senses of the same

morphophonological form. Template names are to be interpreted as follows:

Trans = transitive, Infrans = intransitive, Caus = causative, AgSubj =
subject-argument with the feature ’agentive’, PathArg = argument referring
to a path moved from one place to another (Jackendoff 1983), ChangeArg
= argument referring to a change from one state to another, Change-in-
Loc = verb class that includes verbs denoting change in location, Change-
in-State = verb class that includes verbs denoting change in state. The
semantics of the entries is expressed as an English translation between the
quotes, and the template Ftrs is to remind that the template description is
only partial. The o-templates encode lexical rules that are used to form

curative, passive, reflexive and frequentative verb forms.

muwtT A/V "((V Change-in-Loc Caus AgSubj PathArg
((Trans ’change, move’ Ftrs)
(Intrans *move house’ Firs))
(V Change-in-State Trans Caus ChangeArg 'turn into’ Ftrs))™;

Figure 2.

LEXICON A/V

Al /V;

Alt 3tA "((Curative!))"

8] /V "((U-Passive!))";
ATUTU /V "((Reflexive!))"

e (e)le/V "((Frequentative!))";

Figure 3.

4. Lexical rules in TWOL

As described in Jokinen (ms.), lexical rules are encoded into affixes and
they operate on stems. They determine the relation between a stem and its
derivation in terms of template correspondences. A relation is permitted, i.e.
an application of a rule is accepted, if each of the template correspondences
is accepted. Thus derivation in the sense of deriving one form from another
is not included in the formalism, but the description is declarative. A
lexical rule is defined as a triple:
<N, 1L O>

where N is the name of the rule, I a set of input templates, and O a set of
output templates. The input templates refer to the templates of the stem, and
the output templates to the templates of the result” Each template name
referred to by a rule must be explicitly present in the input template list.
If a name is embedded in an implication relation, it must be spelled out
before the application of the rule.

The rule determines three kinds of correspondences between the input
and output templates. If the input has templates not explicitly mentioned in
the rule, these are transferred to the output as such.

Restrictions specify failing (negative) conditions of the rule. The
reserved name FAIL is used as the output correspondent of a forbidden
input template name. If any of the templates having FAIL as the
correspondent appears in the input’s template list, application of the rule is
blocked.

Operations describe the manipulation of the input information: change
in the template interpretation, deletion of a template from the output. and
adding of a template that is missing in the input. The two last alternatives
related to the reserved template NONE: deletion has NONE in the output.

adding in the input. The input templates are considered obligatory (except

* The definition can be compared to the interpretation of a functor in
Hoeksema and Janda (1988): every functor-category is represented as a
triple consisting of the argument (input-category), the value (output-
category) and the operation performed. However, we regard the operations
considered by Hocksema and Janda (addition, permutation, replacement,
subtraction) as operations concerning the morphophonological realization of
a rule rather than its lexical functioning that we are interested in.

for NONE): if any of them is missing in the argument, the rule application
fails.

Specifications list the templates to be added to the output as an
indication of the rule application. An argument may already have
specification templates, in which case specifications appear redundant.

Optional correspondences are intended to help rule writing by
allowing adjustment of the rule with respect to different inputs: they encode
disjunctions of the same rule. They are operations, but the input templates
are not considered obligatory: if they are found, the operation indicated is
performed, otherwise no action is taken.

No special correspondence type is needed to state necessary (positive)
conditions of a rule: this is already expressed by operational
correspondences. On the other hand, obligatory templates that do not
‘change’, are expressed by an identity relation: this kind of operational
correspondence guarantees that the input template is mapped as it is onto
the output.

None of the correspondence types is obligatory in a rule. However, at
least one of them must be present: if there is nothing to say about a

relation between two entries, no rule exists at all’

—

* As Krister Linden suggested to me, the rule can be formalized with the
help of three primary operations Insert, Delete and Exist representing the
bit-vector operations bit-and, bit-or and find, respectively. If P, Q, R and
S represent correspondences, and Oper is an abbreviation for the Insert,
Delete and Change (= Delete and Insert) operations, the rule can be
expressed as the following logical formula:

—

RESTR: -Exist (P)

OPER: & [Exist (Q) & Oper (Q)]

SPEC: & [Exist (R) v (-Exist (R) & Insert (R))]
OPT: & [(Exist (8) & Oper (S))v -Exist (S)]

In other words, restrictions refer to negative existence in the bit vector,
operations to existence check and either insertion, deletion or change,
specifications to existence check and insertion if not found, and finally,
options to existence check and insertion, deletion or change or negative
existence.

5. An Example

Below is given a sample rule for the productive U-passivization in Finnish.
The morphemes listed in (la) encode the rule given in (1b). The four types
of correspondence are written on separate lines, and abbreviations are used

to name the correspondence type.

(1a) {U-PASS) =(/U/, /JUTU/, /TU/, (InTU/, £TU/, /sTU/)

(1b)

U-PASSIVE!

RESTR: AGSUBJ PASS EMOTIVE COMM STATE MODAL WEATHER
FAIL FAIL FAIL FAIL FAIL FAIL FAIL

OPER: CAUS TRANS SUBJ OBJ
PASS INTRANS NONE SUBJ

SPEC: AUTOM

The rule says that U-passivization is not possible from verbs that have agentive
subjects, are already passives, or belong to emotive, communication, state, modal
or weather verbs. On the other hand, the verb must be causative, transitive and
have subject and object arguments.* The operations map the input template names
causative and transitive onto the output template names passive and intransitive,
the object argument of the input to the subject argument of the output, and delete
the subject argument of the input by mapping it to NONE on the output.” Finally.
the result is specified as having the feature automative.®

An output of the U-passive! rule applied to the sample verb nuuiria ‘move,
change; move house; turn into’ is given below. Only the sense ’turn into” fulfils
the requirements of the rule; the two other senses have agentive subjects. The

semantics of the result is not specified.

¢ Transitivity of course presupposes the subject and object arguments, but
their explicit presence is required because of the argument changing relation
that the passivization rule encodes.

* Implications of the object-subject-correspondence on the syntactic level
(e.g. case marking) are not spelled in the rule, but is part of the syntactic
interpretation of the templates OBJ and SUBJ.

¢ This encodes the special meaning of the U-passives in Finnish: an event
is conceived as automative that takes place without any overt causer. Thus
verbs with clearly agentive subjects fail to form U-passives, see Jokinen
(ms.).

muutTu /V "((V Change-in-State Autom Pass Intrans ChangeArg
"PassOf(turn into)’ Frs))"

6. Finiteness

For pointing out the finiteness of the formalism, I am grateful to Krister Linden for
the following observation. Given the set of templates T, we can construct a power-
set of T with 2™ elements. We then construct a non-deterministic finite state
ransducer with one state for each element in the power-set. A rule in the proposed
formalism defines a non-deterministic transition from one state to a set of other
states. As such, an equivalent deterministic FST can be constructed for any non-
deterministic FST used as an acceptor since a deterministic FSA can always be
constructed that accepts exactly the same language as a non-deterministic ISA
(Hopcroft & Ullman 1979). In this case, the deterministic EST has 2*" number of

states.”

REFERENCES

Calder, J. and E. te Lindert 1987. The Protolexicon: Towards a High-Level
Language for Lexical Description. In E. Klein and J. van Benthem (eds.)
Categories, Polymorphism and Unification. Centre for Cognitive Science,
University of Edinburgh, Institute for Language, Logic and Information,

University of Amsterdam. 355-370.

7 A rough estimate of the complexity of a minimized FSA is the following
(also called to my attention by Krister Linden). Using a bit-vector stack and
Insert, Delete and Find operations, it is possible to construct a one-way non-
deterministic push-down transducer with a space-time complexity of
O(RNITP’SY), where

R = max number of Insert, Delete and Find operations per rule

N = max number of morphemes per word

ITl = number of templates

S = max number of rules per morpheme.

Hoeksema, J. and R.D. Janda 1988. Implications of Process-Morphology for
Categorial Grammar. In R.T. Oehrle, E. Bach and D. Wheeler (eds.)
Categorial Grammars and Nawral Language Structures. Dordrecht: D.
Reidel Publishing Company. 199-247.

Hoperoft, J. and J.D. Ullman 1979. Introduction to Automata Theory, Languages
and Computation. Reading, Mass: Addison-Wesley. Jackendoff, R. 1983.
Semantics and Cognition. Cambridge, Mass: The MIT Press.

Jokinen, K. ms. Lexicon, Word-Formation and Grammar. Manuscript for a PhD.
Thesis. Department of General Linguistics, University of Helsinki.
Karttunen, L. 1986. D-PATR: A Development Environment for Unification-Based

Grammars. CSLI Report 61, Stanford.

Koskenniemi, K. 1983. Two-Level Morphology: A General Computational Model for

Word-Form Recognition and Production. Publications 11, Department of

General Linguistics, University of Helsinki, Helsinki.

