
SRy 1996Yearbook of the Linguistic Association of Finland. Pp. 53-64.

Esa Itkonen

Is There a 6Computational Paradigm' within
Linguistics?

The advent of computers has considerably changed the landscape

of linguistics, as shown by the increasing number of publications

and conferences devoted solely to computational linguistics. The

emergence of this subdiscipline is not due to the fact that a

heretofore neglected realm of linguistic phenomena would
finally have attained the recognition that it deserves (as has

happened e.g. with neurolinguistics or pidgin-and-creole

studies). If this were the case, then computational linguistics
would simply occupy one more or less well-defined subdomain
within the overall field of linguistics. However, computational
linguistics purports to investigate those some phenomena

(roughly: sentences and texts) that have been investigated since

the inception of linguistics. The question now has to be asked

whether this new way of seeing differs from the old one

sufficiently much to justify speaking of a paradigma.tic shift (cf .

Winograd 1983: 13-22).
Before proceeding any farther, however, I have to answer a

possible objection. It is sometimes claimed ttrat a given

theoretical framework, whether or not we choose to call it a

'paradigm', literally constitutes its own data. As can be seen

from the preceding paragraph, I do not share this view. (This

entails that in my opinion Saussure asserted only a haH+ruth in
claiming that "c'est le point de vue qui crée I'objet".) There is
always an atheoretical (or pretheoretical) level at which it makes
perfect sense to speak of differenr theories (or 'paradigms')
dealing with the same data.In practice no one has ever doubted

this, even if in one's philosophical moments one might feel



54

of the different frameworks (cf. Itkonen 1991: 325428). For
instance, it would be perverse to deny that one and the same set

of sentences may be analyzed in dissimilar ways by
representatives of different schools.

Now let us see whether there is any justification for
speaking of a computational paradigm. In presenting my
argument, I shall make use of a very simple artificial language
l, namely a language whose sentences are of the form (aå)".
(This is, in the present context, the 'same data' which the
different types of description have to come to grips with.) I do
not think, however, that the simplicity of my example
undermines my argument. That is, I do not think that making
the example increasingly more complex would at any point
bring aboutaqualítatíve change in the mutual relations between
the types of descriptions that I shall discuss.

Already in the 'pre-computational' days linguists made use

of rewriting rules. Thus, when we have to present a grammar
for L within the framework of mainstream, non-computational
linguistics, it looks like this:

I) 11: S -+ abS

12:S+ab

A sentence like ababab is generated in three steps, namely
by applying the rule r, twice, and then by applying the rule r,
(cf. figure 1). 

s

ab

ab

Figure 1.



An even older formalism for describng L is provided by
predicate logic (plus the notion of set-membership).In this case

ihe grammai contains one universally quantified implication and

one singular statement:

55

II) Vx(xe S

abe S

l abx e S)

The senteneæ abafub (or, more precisely, the truth that

ababab is a sentence) is generated by two joint applications of
Universal Instantiation and Modus Ponens:

Vx(xeS>abxeS)
abe S

abab e S

Vx(xe S = abxe S)

abab e S

ababab e S

The grammars I and II are tested in the samg way' namely-

by finding out whether they generate all and only sentences of
¿. Ttrese two aspects cofrespond to ttre notions of completeness

and sound.ness, ãs they are used in the theory of logic. On the

one hand, we have a sentence of l, and we ask whether it is

generated by our gra¡nmar. If the answer is 'yes' every !þe we

ãsk this queition, ihe grammar generates a// sentences of L, and

is therefore complete. On the other hand, we have our
graÍrmar, and we ask whether what it generates is a sentence of
l. lt the answer is 'yes' every time we ask this question, our
grammar generates only sentences of L, and is therefore sound.
(It is of ño consequence that L happens to be so simple as to



56

make, in reality, any questioning superfluous.) The notions (or
viewpoints) of soundness and completeness conespond to the
notions of 'prediction' and 'explanation', as they are used in the
philosophy of the natural sciences (cf. Itkonen 1978: 4-9,254-
2s3).

All natural-language grammars are tested as to their
soundness and completeness, with the qualification that an
additional criterion is constituted by the 'adequacy' of the
structural descriptions (whatever concrete interpretation is
given to this difficult notion). A natural-language grammar is
concerned with the (intuitive) correctness of sentences while an
axiomatization of formal logic is concemed with the (intuitive)
validity of formulae. But apart from this difference, they are
tested exactly in the same rvay. It is crucially important to
understand that, apart from such simple cases as propositional
or predicate logic, a logical axiomatization is falsified if it,
although provably sound and complete, fails to be íntuitively
sound and/or complete, i.e. if it generates intuitively non-valid
formulae and/or fails to generate intuitively valid formulae. In
this respect, axiomatizations of natural sciences differ from
either grammatical or logical axiomatizations. They purport to
generate all and only empirícally true sentences (of the relevant
domain), but empirical truth, unlike intuitive correctness or
intuitive validity, is a property which cannot be assigned to a
sentence just by inspecting it (cf. Itkonen 1978: n6-287).

Next, we shall consider a computational grammar of /,. I
submit that computers are taken to have inaugurated a new era
in linguistics, mainly because they seem to enable us to have
dynamíc descriptions, where we previously had orùy static
descriptions. Previously we investigated linguistic structures;
but now we investigate linguistic processe,s, more precisely
processes of speaking and understanding. (Notice that since
cognitive-computational processes apply to structures-and are
indeed represented as just successions of structures-, it would
be more accurate to speak of 'structures-and-processes', rather
than of just 'processes'.) As a consequence, it is particularly
important to determine the extent to which this idea of a



m) s(ab(x)):-s(x).
s(ab).

As inputs, the grammar may be given two types of
'questions', exemplified here by A and B:1

In response to A, the grammar produces the output 'yes.'
(which means that ababab has the property of being a sentence).

In response to B, it produces the following oulput:

57

'dynamic tum' is justified.
I shall choose PRoLoG as the language in which the

computational grammar of L is couched. The grammar contains

one'rule' and one 'fact':

X: ab;
X: ab(ab);
X: ab(ab(ab));

It is clear that A and B exemplify sentence-recognition and

sentence-generation, respectively. They may be considered as

loose analogues of the corresponding psycholo gical proces ses.

A comparison of the grammars I, II, and III reveals both

similaritiesìnd dissimilarities. On the one hand, the structure of
the grammar lll is exactly the same as that of the grammar II
(and, by implication, that of the grammar I). On the other, in
the casè of ttre grammars I and II, it is the grammarian (or the

logician) hímself who has to perform the tasks of sentence-

geãeration and sentsnce-recognition, whereas in the case of the

ltamma. III, the grammarian needs only to give the input in

))s(ab(ab(ab
s(x).

?

?

A)
B)

t I disregard the questions involving the'anonymous variable' (-).



58

form of the relevant questions; after this, it is the grammar
which performs the tasks of sentence-generation and sentence-
recognition.

It seems clear to me that, from the viewpoint of actual
descriptive practice, the dissimilarities are outweighed by the
similarities. Writing the graÍrmar III is an undertaking
qualitatively similar to writing the grammars I and II. Of
course, the grammar III contains the idea of a machine which
performs the tasks assigned to it, but from the viewpoint of the
grammarian this idea remains hidden. The affinity with
mainstream linguistics is enhanced by the fact that the pRoloc
notation may be replaced by the rewriting notation, resulting in
the 'definite clause grammar' (cf. Pereira & Shieber 1987:70-
7e).

Finally, we shall consider a grammar which is literally a
machine.I have chosen the Turing machine for this purpose.
This choice may need some justification.

First, Turing machines are norrnally regarded as abstract
machines defining mathematical functions; but it is also possible
to regard them as machines in the literal sense of the word. In
fact, it is quite convenient to illustrate the notion of causality
with the aid of a (concrete) Turing machine. On this
interpretation, the symbol which the machine reads at t is an
external ca.use, while the state in which the machine is at r is an
internal cause. The combination of these two causes brings about
one internal effect, namely the state in which the machine is at
t+l,andtwo external effects, namely the symbol which, having
been printed in lieu of the earlier symbol, will be on the tape at
t+1, and the movement either to the left or to the right (or,
perhaps, the halting) which the machine will have performed at
t + 1 (cf . Itkonen 1983: 22, 287 -288).

Second, the language I is so simple that it could also be
described by a finite-state machine. At present, however, I am
not interested in conceptual parsimony, but rather in conceptual
clarity; and, as I just noted, the Turing machine is well suited to
illustrate the functioning of a causal process.

Third, the grammar which I am about to present handles



59

only the aspect ofsentence-recognition (cf. table 1)'

ry) {o 9r \z

A
a

b
B

R
Qt, R
Qz, R
1, stop

92, R
Qo, R
0, stop

R
R
0, stop

Table 1.

In the 'machine-table' (see table 1) the column outside the

rectangle contains the 'external causes', i.e. the symbols. on the

tup", õhrt as the row outside the rectangle contains the 'intemal

ðäor"r', i.e. the machine-states. The effects of these pairs of
causes are located inside the rectangle, in such a way that non-

changes are not explicitly mentioned. For instance, the machine

staft; in eo, reading .A.-As a result, it replaces 4 Uy.A (i'e'
leaves it unchangeð), enters Q" (i.e. remains in it), and moves

one step to the rigtri.- The only new_ symbols that. are printed

ii" fi"" of B) ãre 1 and 0, which mean 'yesr and 'no',
respectively.

Let us iee how the grammar IV recognizes that ababab is a

sentence, whereas abbaba, aababa, and a are not sentences (cf.

table 2).
when there is a conect sentence on the tape, the machine

moves from A to B, while alternating between Qo aurrd Q,,

replaces B by 1, and stopg. snr9l the machine encounters an

.iror, i.e. when it reads èittrer b in qo or ¿ in q,, it entets q,,

,"rnuint in it until it reaches B, replaces B by 0, and stops' The

sentence ø, which entails reading B h q,, constitutes an error
type of its own.



60

1

AabababÉt'ItttìrrrttIt
Qo Qo 9r 9o I' Qo I' Qo

A a b b a b "&t'rtr'.ìrrrrttt
9o 9o I' Qo 9¿ Q, Q. Q¿

Aaababaä^t'trrtìrìrttIt
9o Qo I' Qz Q. 9. 9" Q.

A "&trs
Qo 9o Q'

Table 2.

'When we compare the grammar IV to the other three
grammars, we finally discover a genuine dissimilarity. The
grammar IV is dynamic, in the sense of describing a temporal
process; it incorporates the notion of chnnge of state. By
contrast, the grammars I, II, and III describe static, atemporal
structures; any processes, whether they are perfomed by the
grammarian or by the computer, remain hidden. To put it in a
nutshell, I claim that the notion of a computational paradigm in



61

linguistics is justified only to the extent that computer-based
descriptions resemble the grammar fV.

Once I have stated my basic claim, I must immediately
qualify it Somewhat. It is quite clear that PRoLoG programming
¡mpl¡c¡tly contains the idea of a process. Answering a question

means either proving the sentence asked (as in 'understanding')
or proving the sentences resulting from replacing the. variaþle($
in ihe senience asked by constants (as in 'production'); and this

happens by searching and fínding facts that qualify as

inJtantiations of the bodies of rules (i.e. of the antecedent clauses

of universal implications). The programmer knows that rules
are read from top to bottom and that conjunctions in the bodies

of rules are read from left to right; and observing the correct
order may make the difference between a program that works
and one that does not. This knowledge may, however, be

incorporated into the grammatical conventions. Therefore it still
remains the case that it is possible to practice PRoloc-based
grammatical description without having any very clear notion of
the computational processss involved.

The point thatl have made here rather informally has been

made quite explicitly, and at a more general level, by Petre &
Windei (1990). They discuss rhe difference between declarative
and imperative computer languages, which roughly corresponds

to the, difference 
-between our grammars III and IV. A

declarative language specifies what is the problem to be solved,

without indicaiing how it is solved. Because "declaration, by
nature, excludes ãlgorithm" (p. 176), the solution of the how-
question is defened to the language implementation. Imperative
|ãnguages, by contrast, still reflect the basic machine operations:

as ã sei of instructions, they show the process of computation.
Between pure types of imperative and declarative languages

there are intermeãiate types, i.e. declarative languages with an

"expression of algorithmic intent". Now it is precisely Petre &
\Miider's (1990)- claim that the 'imperative vs. declarative'

distinction should be thought of as 
^ 

continuum; and they
proceed to place various programming -languages 

on it. For
instance, FoilrRAN is a typical imperative language; LIsr is



62

situated exactly at the 'imperative vs. declarative' divide;
PRoLoc lies somewhere between Lrsp and typical declarative
languages. Peter & 'Winder reach this conclusion: "The basic
difference between programming styles lies in the hiding of the
computational model" (p. 180). This entails, interestingly
enough, that it is questionable whether pRot.oc-based
descrþtions should be considered as part of computational
linguistics at all.

Thus, whether or not computers have brought about a
change of perspective within linguistics, is a matter of degree,
and this in a twoþld sense. First, one language (e.g. rnor-oc)
may be more 'conseryative' than another (e.9. r.rsr). Second,
even within one and the same language the grammarian may be
more or less aware of the (more or less) hidden computational
process. I submit that the gradunl nature of this change of
perspective does not agree too well with the way that
paradigmatic shifts are generally conceived of. More precisely,
some computer linguists (i.e. those operating with languages
close to the imperative end of the continuum) may have
experienced a genuine paradigmatic shift in their way of
thinking, but others may not.

I shall conclude this paper with a few remarks of a more
general nature, relating the preceding results to questions of
language use and pragmatics. First, the distinction between
declarative and imperative languages is analogous to that
between logical, set-theoretic semantics and algorithmic or
procedural semantics. In Itkonen (1983: 149-L51,311-313) I
argued ttrat, in terms of psychological import, algorithmic
models are more informative than logical ones; and this
conclusion may now be generalized so as to apply to the
distinction between imperative and declarative languages.

Second, algorithmic semantics is a misnomer to the extent
that the computational processes are meant to be even rough
analogues of cognitive processes, simply because this amounts to
committing the psychologistic fallacy (op. cit. p. 313). That this
fallacy is nearþ ubiquitous in today's cognitive science, does
nothing to lessen its objectionable character. This also means



63

that any comparison between Turing and ÏVittgenstein (see e.g.
Leiber 1991: 81-88) is misconceived, unless the processes that
the machine performs are thought of as (embedded in) public
actions governed by socially valid norms.

Third, Leiber's (1991: Ch.10) attempt to align Chomsky
with Turing and Wittgenstein is misconceived tout court. Iî
addition to the fact that he is interested in mental structure, not
in mental process (cf. Jackendoff 1987: 38-39), Chomsky has

consistently denied the relevance of behavioral, public criteria,
thus explicitly opposing ttre V/ittgensteinian position (cf. Itkonen
1983 : 227 -233, 243-248).

It is often said that computers may simulate processes of any
kind, whether physical, psychological, or social. It should be
clearly understood, however, that computers may be, and
typically are, quite unable to simulate those surroundings and/or
accompaniments which, to a large extent, constitute a process as

what it is. Therefore a program alone is seldom enough.

References

Itkonen, Esa (1978) Granv¡aticøl Theory a.nd Metascienc¿. Amsterdam:
Benjamins.

Itkonen, Esa (1983) Causality in Linguistic Theory.I¡ndon: Croom Helm.
Itkonen, Esa (1991) Universal History of Linguistics: India, Chinø, Arabía,

E urope. Amsterdam: Benj amins.
Jackendoff, Ray (1987) Consciousness and the Computationnl Mínd.

Cambridge, MA: MIT Press.
Leiber, Justin (1991) An Invitation to Cognitive Science. Oxford: Blackwell.
Pereira, Fernando & Shieber, Stuart (1987) Prolog and Natural-Langwge

A naly si s. Stanford: CSLI.
Petre, Márian & tWinder, R. (1990) On Languages, Models, and

Programming Styles. The Computer Journal33: 173-180.
Winograd" Terry (1983) Language as a Cognitive Process. Reading, Mlt:

Addison-Wesley.



&

Esa Itkonen
Deparrnent of Linguistics
Henrikinkatu 4a
FIN-20014 University of Turku
Finland
E-mail eitkonen@utu.fi


