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Relja Vulanović 

On Measuring Language Complexity as Relative to the 
Conveyed Linguistic Information 

Abstract  

In this mathematical approach to language complexity, a previously proposed formula 
for measuring grammar complexity is derived in a different way and somewhat modi-
fied. The formula measures relative language complexity, “relative” because the con-
veyed linguistic information is taken into account. Many examples, either abstract or 
representing structures of natural languages, are used in the derivation and to illustrate 
the method.1

1. Introduction 

Language complexity has recently become very interesting to researchers, 
as witnessed by an increasing number of conferences and publications on 
the topic. In this paper, I present a newly modified formula for measuring 
grammar complexity. The formula is based on a formal grammatical model 
and language complexity is identified with the complexity of the formal 
grammar. Only simple sentences are modeled, but with various grammati-
cal structures. The formula enables a comparison of the complexity of these 
structures relative to the linguistic information they convey. Simply put, a 
grammar is less complex, and at the same time more efficient, if it conveys 
more information (more meaning) with fewer forms and rules. As opposed 
to this kind of information-relative complexity, absolute complexity only 
takes forms and rules into account. This can be illustrated by McWhorter’s 
(2001: 127) discussion of Kikongo and Japanese. In Kikongo, there are 

 
1 As a mathematician, I enjoy and appreciate any opportunity to share my work with 
linguistic community. I presented an earlier version of this paper at the conference on 
Approaches to Complexity in Language, Helsinki, August 24–24, 2005. That this is now 
a much improved version, I am grateful to two anonymous SKY referees. My thanks are 
also due to Leena Kolehmainen, without whose encouragement this paper would not be 
in its present form. 
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four kinds of past tense (including completive), while Japanese has only 
one past tense and no grammaticalized indicator of completiveness exclu-
sively. This is why McWhorter considers this part of the Kikongo grammar 
more complex than the corresponding part of Japanese. My formula for 
absolute grammar complexity supports this. However, speaking relatively, 
Kikongo cannot be classified as more complex just because it has more 
tenses, since each tense means a different kind of linguistic information. 
This information is not important in Japanese, but this does not imply that 
it is not important at all. For whatever reason, it is important to the speakers 
of Kikongo. The need for conveying more information justifies the use of 
more tenses in Kikongo, thus information-relative complexity of Kikongo 
is not necessarily greater than that of Japanese. It is one of the goals of the 
present paper to point out that the conveyed linguistic information should 
be taken into account when measuring language complexity. The purpose 
of the last example in the paper is to illustrate this in particular.  

The simpler the grammar, the greater its efficiency. This is why I 
define the measures of grammar complexity and efficiency as reciprocal to 
each other. My concept of grammar efficiency, which goes back to 
Vulanović (1991), is inspired by machine efficiency. Machine efficiency 
can be defined as the measure of the useful output divided by the measure 
of the input. It is energy or work that is measured in physics and engineer-
ing, but if grammars are also considered “machines,” then linguistic input 
and output have to be measured. The information conveyed by the 
grammar is viewed as machine output and the forms and rules as machine 
input. This is the main idea behind the way the complexity formula is 
constructed. Since my approach is theoretical and model-based, once the 
formal grammatical model is established as a framework, I do not consider 
anything outside the model. Therefore, the question is how to define and 
measure grammatical complexity within the model. Moreover, the derived 
formula becomes the definition of complexity in the model. This perhaps is 
a luxury that only mathematicians enjoy, but working with a model enables 
utilization of mathematical formality and precision.  

The first grammar efficiency formula (Vulanović 1991) is very ele-
mentary and it is developed further in Vulanović (1993, 2003). A some-
what modified formula is derived in a different way in the present paper. 
The derivation and the whole presentation is simpler and less mathematical 
than in Vulanović (2003), making the results more easily understandable to 
linguists. This is another goal of the present paper. Unlike in Vulanović 
(2003), the formula for measuring information-relative complexity is intro-
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duced here step by step. I start with a very simple first version of absolute 
complexity and then use a sequence of examples that motivate more 
sophisticated versions until the final one is reached. The final formula takes 
processing difficulty and ambiguity into account, as well as the amount of 
the information that the modeled grammar conveys. During the derivation 
of the formula, I compare it to the complexity criteria by other authors. My 
intention is not to model everything these criteria state, but my formula 
agrees with the criteria on many points. One of the most significant diffe-
rences is in the treatment of syntactic, semantic, and pragmatic functions 
(SSPFs). Several authors consider them complexifying factors, but in my 
model, only forms and rules are complexifying factors and SSPFs consti-
tute the grammar output.  

The rest of the paper is organized as follows. In section 2, I survey and 
comment on some existing results on language complexity. I introduce in 
section 3 the notation and a description of the formal grammatical model 
which serves as the basis for the formulas. The derivation of the informa-
tion-relative complexity formula is presented in section 4. Section 5 con-
tains further examples. Finally, section 6 offers some concluding remarks. 

2. Language complexity according to other authors 

In his book, Dahl (2004) discusses many factors which are important for 
linguistic complexity. To him (Dahl 2004: 25), relative complexity means 
the length of the additional description necessary to characterize some 
entity within a given theory. The theory already provides some information 
about the entity and its description does not have to contain this 
information. If no background information is assumed, the length of the full 
description of the entity would be its absolute complexity. Following this, 
Miestamo (2006a, 2006b, to appear) speaks of absolute complexity as 
theory-oriented, as “the number of parts in a system” or “the length of the 
description of a phenomenon” (Miestamo 2006a). However, he considers 
relative complexity the kind of language complexity discussed in Kusters 
(2003), where language processing/acquisition/learning difficulty is taken 
into account. This, therefore, means complexity relative to language users. 
My concept of relative complexity is something different—complexity 
relative to the conveyed information. In order to avoid any possible 
confusion, I refer to it as the information-relative complexity. 

Hawkins (1994, 2004) considers language complexity without diffe-
rentiating between absolute and relative complexity. His view of complexi-
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ty is based on the ideas in Miller and Chomsky (1963) and Frazier (1985). 
Miller and Chomsky define syntactic complexity as the ratio of the number 
of non-terminal nodes to the number of terminal nodes in the phrase-
structure tree. Frazier modifies this metric by making the node count local, 
i.e. by considering not the whole sentence but groups of terminal nodes and 
the nodes dominating them. Hawkins’ (1994) theory of Early Immediate 
Constituents uses a refined version of this local metric. In Hawkins (2004), 
he extends his work beyond phrase-structure nodes to include morphology, 
morphosyntax, and semantics. He states that  

 
(1) Complexity increases with the number of linguistic forms and the number of 

conventionally associated (syntactic and semantic) properties that are assigned to 
them when constructing syntactic and semantic representations for sentences. 
(Hawkins 2004: 9) 
 

However, in his 2004 book, Hawkins is concerned more with grammatical 
efficiency than complexity, and to him, the measures of the two are not 
reciprocals of each other: 

 

(2) Efficiency (…) may involve more or less complexity, depending on the syntactic 
and semantic representations to be assigned to a given sentence and on their 
required minimum of complexity (…) some structures can be more efficient than 
others relative to this minimum. (ibid.) 
 

Hawkins proposes three general principles of efficiency, which are de-
scribed as preferences of the human processor. The principles are given in 
(3). 

 
(3) Hawkins’ (2004) efficiency principles. 

i. Minimize Domains: The human processor prefers to minimize the connected 
sequences of linguistic forms and their conventionally associated syntactic and 
semantic properties in which relations of combination and/or dependency are 
processed. (Hawkins 2004: 31) 

ii. Minimize Forms: The human processor prefers to minimize the formal 
complexity of each linguistic form F (its phoneme, morpheme, word, or 
phrasal units) and the number of forms with unique conventionalized property 
assignments, thereby assigning more properties to fewer forms. (Hawkins 
2004: 38) 

iii. Maximize On-line Processing: The human processor prefers to maximize the 
set of properties that are assignable to each item X as X is processed, thereby 
increasing On-line Property to Ultimate Property ratios. (Hawkins 2004: 51) 
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Obviously, the kind of complexity Frazier and Hawkins consider is 
processing complexity, which some authors, like McWhorter (2001: 134), 
Dahl (2004: 39), and Miestamo (to appear: 8) feel should not be part of 
complexity metric. They view processing complexity as user-related and 
unsuitable to be part of an objective, information-theoretic concept of com-
plexity. My opinion is that processing can be defined in an objective, 
theoretical way and can be analyzed as such. The metric I present here is 
theoretical and it has a component which depends on processing (although, 
contrary to Hawkins, I am not interested in the human processor). The 
number of parts in a system does not tell us what these parts are and how 
they function in the system. Similarly, judging the complexity of different 
phenomena based on the length of their descriptions seems too simplistic to 
me. We do not know what these descriptions contain nor do we know the 
relationship between the components that the phenomenon consists of. 
Juola’s (1998) computerized data-compression approach may represent the 
characteristics of the system better than the number of system parts, al-
though those characteristics are only implicitly included in the measure-
ments. 

It seems inevitable to have to restrict studies of complexity from 
global complexity to local complexity (terms used by Miestamo (to 
appear)). Global complexity is the overall language complexity which re-
quires a complete and detailed grammar. As Miestamo (2006a) points out, 
this is a formidable task for which we do not have adequate linguistic tools. 
He refers to this problem as the problem of representativity. What we can 
accomplish is studies of complexity of separate aspects (local areas) of 
grammar across languages. For instance, Miestamo (2006b) analyzes the 
complexity of standard negation while Nichols (1992) and Juola (1998) 
discuss morphological complexity. It, therefore, should not be surprising 
that my model only represents simple structures, although the same ap-
proach can be applied in principle to more complicated constructions. De-
scribing the local grammatical area considered in this paper, I can say that 
it deals mainly with the complexity of word order and cases in simple sen-
tences. Many other language features (like agreement and cross-reference, 
discontinuous constituents, pro-drop constructions, stylistic nuances, etc.) 
are not intended to be represented in the model. Nevertheless, the model is 
still capable of describing various grammatical structures, as many ex-
amples in the paper show. And, if we do not know how to measure com-
plexity of these simple structures, how can we hope to accomplish this with 
the more complicated ones?  



RELJA VULANOVIĆ 

 

404 

I will compare below my metric to the works mentioned above and 
particularly to McWhorter (2001, to appear b). McWhorter (2001) is the 
leading paper in a discussion of language complexity, to which the whole 
double issue of Linguistic Typology, 5:2/3 (2001), is devoted. In this paper, 
McWhorter proposes the following metric (McWhorter 2001: 135–137): 

 
(4) A grammar is more complex than another to the extent of 

i. marked members of its phonemic inventory, 
ii. rules its syntax has to process, 
iii. fine-grained semantic and/or pragmatic distinctions it gives overt and gram-

maticalized expression to, 
iv. its use of inflectional morphology. 

 
He modifies the above criteria in McWhorter (to appear b). This is how 
they are described in McWhorter (to appear a: 2): 

 
(5) A grammar is more complex than another to the extent of its 

i. overspecification (“marking of semantic categories left to context in many or 
most languages, such as evidential marking”), 

ii. structural elaboration (“number of rules mediating underlying forms and 
surface forms, such as morphophonemics”), 

iii. irregularity. 

3. The formal grammatical model 

An elementary formal grammar is used to model simple sentences. It is a 
version of Dik’s (1997) Functional Grammar (FG), that I have used in 
Vulanović (2005), but I will present it this time in analytic form. I find FG 
convenient for the purpose of this research because it does not involve 
phrase-structure trees and the underlying structures that should be ordered 
(linearized) are directly accessible. Languages use word order to avoid 
ambiguity and word order is related to the parts-of-speech system 
(Hengeveld et al. 2004). This is included in the present formal grammar. 

Only core predications of FG are modeled, with terms and satellites 
treated equally. The lexicon, phonology, term formation, and the FG states 
of affair are not represented. Only verbal predicates with fully expressed 
nominals are considered. This is illustrated below by the English sentence  
 
(6)  Mary was bought a book by John. 
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The structure of this sentence can be represented as 
 

(7) N Pas N [by N], 
 

where N stands for nouns (or even some noun phrases since ‘a book’ is 
represented simply by an N), Pas for the used passive form of the verb 
‘buy’ (without explicit indication of the person, number, or tense), and 
where the square brackets mean that the phrase ‘by N’ is a single unit in the 
string of symbols in (7). When (7), which is considered a sentence, is 
parsed, strings of the FG semantic, syntactic, and pragmatic functions 
(abbreviated together as SSPFs) are assigned to each component of (7) and 
the result is the analysis  

 
(8) N Pas N [by N]  BenSubj P Go Ag. 

 
In (8), Ben (beneficiary), Go (goal), and Ag (agent) are semantic functions 
and Subj (subject) is a syntactic function. Obj (object) is the only other 
syntactic function in FG (it does not have to be assigned in this example), 
but I find it convenient here to consider P (predicate) a syntactic function 
too. Ben and Subj are joined together to form a string of SSPFs which is 
assigned to the first N in (7), i.e. to ‘Mary’ in (6). Pragmatic functions are 
not assigned in (8), nor will they be needed in any example of this paper.  

The analysis in (8) can be viewed as the result of two components of 
the grammar. The first one is a mapping describing individual assignments 
of the SSPFs, which in this example looks like  

 
(9) N  BenSubj, Go,     [by N]  Ag,     Pas  P. 

 
Based solely on the mapping in (9), sentence (7) would be ambiguous since 
it would have two analyses: BenSubj P Go Ag and Go P BenSubj Ag. The 
second component of the grammar is needed to provide the permissible 
orders of the SSPFs. If the order BenSubj P Go Ag is the only one per-
mitted, (7) has to be analyzed like in (8). Note, however, that many other 
permutations of (7) can be analyzed unambiguously as long as the relative 
order of BenSubj and Go is fixed. If, like in (8), BenSubj precedes Go, 
there are 4!/2 = 24/2 = 12 other unambiguous sentences, like Pas[by N]NN 
for instance. 

Generalizing and formalizing the above example, we can describe a 
grammar as a mapping Φ of type (9) and a set R of permissible orders of 
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SSPFs. On the left side of each arrow in Φ, there is a single element of a set 
C symbolizing word classes, case forms, verbs and their forms, i.e. any 
grammatical category that is used to convey the strings of SSPFs occurring 
on the right side of each arrow. Those strings are elements of another set, 
F. Note that each element of C occurs exactly once in Φ, whereas on the 
right side of each arrow there may be more than one element of F. This 
models possible violations of the One-Meaning–One-Form principle, 
which is important for the discussion of grammatical complexity (Miesta-
mo, to appear). 

Let C, F, and R have k, n, and ρ elements respectively. 
From this point on, the notation for SSPFs is simplified. S and O are 

used instead of XSubj and XObj respectively, where X is any semantic 
function. O also replaces SSPF strings starting in Go, except for GoSubj 
(which is rendered as S). This brings the notation closer to works on word 
order ty-pology, which usually refer to S, O, and V. P is, nevertheless, 
preserved in-stead of V, since V, unlike S and O, is not an SSPF. 

The following four examples illustrate the above further. In all of 
them, F = {S, O, P} (thus n = 3) and verbs (V) are used as a grammatical 
category conveying P.  

 
Example 1. Let C = {N, V}, so that k = 2. N is interpreted as either S or O: 
 
(10) Φ:     N  S, O,     V  P. 

  
Furthermore, let 

 
R = {SOP, SPO, PSO}. 
 

This grammar, denoted by G1, admits three sentences (NNV, NVN, and 
VNN), which are all unambiguous. If another string is added to R, some 
sentences become ambiguous, e.g. if OSP is an additional string in R, NNV 
is an ambiguous sentence since it can be interpreted as both SOP and OSP. 
Therefore, if ρ* denotes the greatest possible number of orders in R, so that 
no sentence is ambiguous, then in this example, ρ = ρ* = 3.  

In the case of standard transitive English sentences, ρ = 1 < ρ*, the 
only string in R being SPO. Let GE denote this grammatical structure. 

Let us also calculate the quantity ρ' which will be needed in section 4. 
ρ' represents the total number of all parses attempted when each permuta-
tion of each possible sentence is parsed. It is assumed here that the parsing 
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process is only based on the information obtained from mapping Φ and set 
F, and not from set R. The reason for this will be explained later in example 
6. Because of this assumption and because all permutations are considered, 
more orders may have to be analyzed than what is contained in set R. It is 
also assumed that parsing proceeds from left to right, one element of set C 
at a time. For instance, using the mapping in (10), sentence NNV can be 
parsed in four ways: SOP, OSP, SSP, OOP. However, the parser has the 
information from set F that each sentence has to convey S, O, and P, and 
this is why the last two parses are unacceptable. In other words, if, say, S is 
assigned to the first N in the sentence, then O has to be assigned to the 
second N. There will be no attempt to parse NN as SS or OO at all. In this 
case, there are two parsing attempts, starting in SO and OS. Both can be 
completed successfully, but, in general, it is the count of all attempts, 
successful or not, that is used to form ρ'. Since the other two permutations, 
NVN and VNN, are parsed analogously, there are six attempted parses in 
all and the value of ρ' is set to equal 6.  

The idea behind ρ' is to measure how much the One-Meaning–One-
Form principle is violated. The greater the extent of the violation, the 
greater processing difficulty. Thus, ρ' represents here processing difficulty, 
which is understood very formally. I have no intention of connecting this in 
any way with how the human parser operates. In this example, ρ' happens 
to be equal to n! = 3! = 6, but in general, ρ' is not the same quantity as n!. 
Some other examples will show this. The present definition of ρ' is new. 
The quantity introduced in Vulanović (2003) can be used as well and it is 
easier to calculate. However, the new ρ' is connected better to the parsing 
process. 

 

Example 2. This example models simple transitive sentences in languages 
with object marking. Set C has 3 elements (k = 3): the nominative case 
(Nom) is used to convey S, the accusative case (Acc) to convey O, and V 
conveys P. Thus,  

 
(11) Φ:     Nom  S,     Acc  O,     V  P. 

 
This time, ρ* is 6 since all six permutations of S, O, and P can be included 
in R without creating ambiguity. The grammar with the mapping in (11) 
and ρ = ρ* = 6 is denoted by G2. It is easy to see that in this grammar the 
value of ρ' is also 6. 

 



RELJA VULANOVIĆ 

 

408 

Example 3. Consider a grammar in which S and O are coded on the verb. 
There is only one nominal form, N, but there are two verbal forms, V+ and 
V–:  

 
(12) Φ:     N  S, O,     V+  P,     V–  P. 

 
V+ indicates that S precedes O and V– means the opposite direction. This is 
the first example in which the same SSPF is assigned to different elements 
of set C. Whenever this happens, the whole corresponding pair of elements 
from C and F is used to represent the SSPF when the orders in set R are 
formed. Thus, in this example the pairs are (V+, P) and (V–, P). These 
ordered pairs are necessary since by referring to P alone it would be 
impossible to describe the orders in set R. R contains the following 6 
orders:  

 
R = {SO(V+, P), S(V+, P)O, (V+, P)SO, OS(V–, P), O(V–, P)S, (V–, P)OS}. 
 

This is the maximum possible number of orders in R without permitting 
ambiguous sentences, thus ρ = ρ* = 6. Let G3 denote this grammar. 

ρ' = 12 for the following reason. There are three permutations of 
NNV+ and three permutations of NNV–. Each permutation requires two 
parsing attempts, like in example 1. Note that although V+ means that S 
precedes O, this cannot be concluded from mapping (12) or set F. This 
information is available in set R which is not used in parsing. Ultimately, 
six parsing attempts are unsuccessful since the resulting orders are not in R. 

This is an abstract example, but it will be used to motivate one step in 
the derivation of the efficiency formula. Moreover, similar constructions 
can be found in Algonquian languages. In discourse segments of medium 
size, Cree (Wolfart and Carroll 1981) uses the unmarked proximate form 
for the more central third person, whereas all other third persons are in the 
marked obviative form. The agent in a sentence may be in either proximate 
or obviative form without having any additional marking. Word order is 
not used either to specify the agent, rather, it is the verbal category of 
direction that carries this information. One verbal form indicates that the 
action is from proximate to obviative and another signifies the opposite 
direction. 
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Example 4. Returning to a structure similar to G2, let us suppose that there 
are two declensional noun classes with different nominative and accusative 
forms. This is represented in mapping Φ below: 

 
 Φ:     Nom1  S,     Nom2  S,     Acc1  O,     Acc2  O,     V  P. 

 
In this case, k = 5 and the orders in R can be described simply by referring 
to the SSPFs, like in example 2. However, because of the convention 
introduced in example 3, instead of S and O, the corresponding C-F pairs 
are used. Let 

 
R = Per{(Nom1,S), (Acc1,O), P} U Per{(Nom1,S), (Acc2,O), P} 

       U Per{(Nom2,S), (Acc1,O), P} U Per{(Nom2,S), (Acc2,O), P}, 
 

where PerA denotes the set of all permutations of all elements in a set A. In 
this grammar, denoted by G6, ρ = ρ* = 24. The 24 orders correspond to the 
24 unambiguous sentences, obtained by six permutations of each 
NomiAccjV for i = 1, 2 and j = 1, 2. The value of ρ' is also equal to 24. Like 
in example 2, so here, ρ' = ρ*. This is always the case when each element 
of set C conveys exactly one SSPF. 

In the grammatical model described above, SSPFs are conveyed by 
the elements of set C and by word order represented in set R. This is why 
throughout my work I refer to the elements of C and word order as 
(grammatical) conveyors. What they convey I call linguistically relevant 
information, or simply linguistic information. This is not necessarily just 
the SSPFs, like in the previous examples, but any other information that 
sentences of a language have to convey. Tense, for instance, is considered 
in example 13 as this kind of information. There is a great variation across 
languages in terms of what linguistic information they consider necessary 
to convey. From the point of view of mathematical formalism, it suffices to 
say that anything that is placed in set C is a “grammatical conveyor” and 
anything in set F is “linguistic information.” We may think of set C as of a 
set of linguistic categories or forms and of set F as of their meanings. 
Syntactic rules are contained in set R. 

4. From absolute to information-relative language complexity 

A grammar complexity formula, based on the above grammatical model, is 
derived in this section. It seems reasonable to start the construction of the 
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formula from grammatical conveyors. As for the conveyors in set C, their 
greater number implies greater complexity. This is in agreement with (1), 
which states that complexity increases with the number of linguistic forms. 
Criteria (5i) and (5iii) imply the same (among many other things). The 
rationale behind criterion (4iv) is that inflection is usually a complexifying 
factor because of its effects upon a grammar over time and “the fact that 
some inflection, such as gender marking and declensional noun classes, 
does not correspond to concepts expressed by all grammars, but is instead 
purely supplementary to a grammar’s machinery” (McWhorter 2001: 138). 
As example 4 shows, declensional noun classes increase the number of 
elements in C. 

Word order, as a conveyor, involves more rules if it is less free, i.e. if 
there are fewer elements in R. Gil (2001: 344) also treats the free word 
order of Riau Indonesian as a feature indicating a less complex grammar. 
McWhorter (2001) does not dwell on word order too much, except when 
talking about word order in questions in Tsez and Saramaccan. However, 
his criteria (4ii) and (5ii) indicate that complexity increases with the 
number of rules, which certainly include word order rules as well. 

Therefore, complexity (here, I start identifying complexity with the 
formula under development) is directly proportional to k and indirectly 
proportional to ρ. Probably the simplest formula of this kind is 

 

(13) AC" = 
ρ
k , 

 
where AC stand for absolute complexity, while " indicates that this 
definition is two steps away from the final formula for AC. 

Let AC"i, i = 1, 2, 3, 4, denote the values of AC" for the corresponding 
grammars Gi of the previous section. It is easy to see that  

 

AC"1 = 
3
2 ,     AC"2 = AC"3 = 

2
1

6
3
= ,     and     AC"4 = 

24
5 . 

 
Simple transitive English sentences are even more complex since for this 
structure, AC"E = 2/1 = 2.  

It is immediately clear that the above results are unacceptable. G4 is 
obviously more complex than G2, but AC''4 < AC''2. Moreover, the values 
of AC''2 and AC''3 are equal, even though the G2 mapping (11) looks 
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simpler than (12) in G3. Intuitively, it even seems that G1 is simpler than 
G3, but AC''1 > AC''3. Therefore, the formula for AC should be modified so 
that these inconsistencies can be resolved. 

One of the problems with AC'' is that greater values of k often imply 
greater values of ρ, like in example 4. This should be compensated for by a 
new factor inserted on the right-hand side of (13). This new factor should 
also depend on mapping Φ, which reveals how the conveyors in set C are 
used and whether the One-Meaning–One-Form principle is preserved or 
not. In case of the latter, like in (10) and (12), sentence processing is more 
difficult and greater complexity should be assigned to such structures. All 
of the above is covered by the number of attempted parses ρ', the quantity 
already evaluated for the grammars in examples 1–4. Therefore, the next 
modification of the measure of AC is 

 

(14) AC' = k⋅
′
ρ
ρ . 

 
Factor ρ' makes an important difference between the four grammars of the 
previous section because  

 

(15) AC'1 = 42
3
6

=⋅ ,   AC'2 = 33
6
6

=⋅ ,   AC'3 = 63
6

12
=⋅ , and   AC'4 = 55

24
24

=⋅ . 

 
This corrects the previous problem since AC'1 < AC'3, AC'2 < AC'3, and 
AC'2 < AC'4. As for GE, its complexity is now estimated by AC'E = (6/1)2 = 
12. In G4, the ρ' factor simply cancels out the seemingly artificial increase 
of ρ = ρ*, whereas in G1 and G3, it modifies the complexity measure by 
taking violations of the One-Meaning–One-Form principle into account. 

In order to continue with the derivation of the complexity formula, we 
have to introduce another example. 

 

Example 5. Consider G1 again but assume now that all six permutations of 
S, O, and P are in R. In this grammar, denoted by G5, ρ is increased to ρ = 6 
and AC'5 = (6/6)2 = 2, which means that, according to (14), G5 is less 
complex than G1 although every sentence in G5 is ambiguous. 

The above example shows that AC' is still not an adequate measure of 
grammar complexity. It should not be possible to decrease grammar com-
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plexity by permitting more ambiguous sentences. This is not to say that 
every grammar without ambiguity is less complex than an ambiguous one, 
since the metric for grammar complexity also involves other factors. 
However, if the only difference between two grammars is the amount of 
ambiguity, then it is reasonable to declare the more ambiguous grammar 
more complex. This is not so in example 5 and this is why (14) should be 
modified further. The formula below takes care of the problem illustrated 
by example 5. It is the last iteration in the process of deriving a reliable 
metric for absolute grammar complexity:  

 

(16) AC = γ k     with     γ = 
0ρρ

ρ
−
′

. 

 
Here, ρ0 measures ambiguity and if it is greater, the measure of complexity 
is greater. If there is no ambiguity, ρ0 = 0 and then AC = AC'. The quantity 
ρ0 is defined as 
 

∑
=

=
ρ

ρ
1

0
i i

i

s
a

,  

 
where si is the length of the ith string (order) in R and ai indicates how 
many components of that string are analyzed ambiguously. In G5, each of 
the six strings in R has three components (i.e. si = 3, i = 1, 2,..., 6), two of 
which give rise to ambiguity. Therefore, ρ0 = 6(2/3) = 4, which implies that 
AC5 = [6/(6 – 4)]2 = 6. This puts complexity measures of G5 and G1 in the 
right relation, AC5 = 6 > AC1 = 4.  

The present formula for ρ0 is a slight refinement of the previous one in 
Vulanović (2003), which simply counts all ambiguous sentences ignoring 
how many words can still be analyzed unambiguously. If all components of 
all strings in R have ambiguous interpretation, then ρ0 = ρ and AC in (16) is 
understood as infinite complexity. This is the main reason for the way ρ0 is 
included in formula (16). ρ'ρ0/ρ, for instance, has the same effect as the 
adopted ρ'/(ρ – ρ0), in that complexity increases together with ambiguity, 
but ρ'ρ0/ρ does not become infinite when ρ = ρ0. If a language, as described 
by the present model, has infinite complexity, this basically indicates that it 
is useless—no information can be deduced from its sentences. 
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Frazier (1985: 135) recognizes ambiguity as a source of processing 
complexity. Hawkins (2004) discusses ambiguity issues related to his 
efficiency principles (3), particularly to (3ii) Minimize Forms. As the 
number of forms is reduced, “[c]hoices have to be made over which 
properties get priority for unique assignment to forms, and the remaining 
properties are then assigned to more general forms that are ambiguous, 
vague, or zero-specified with respect to the property in question” (p. 38). 
Other afore-mentioned references on language complexity do not deal with 
ambiguity that much. This is not surprising since there are many other 
factors, beyond syntax and morphology, that language can use to resolve 
ambiguity—Hengeveld et al. (2004) mention prosodic, semantic, pragmat-
ic, and visual factors. However, in a simple theoretical model like the pres-
ent one, ambiguity plays a significant role, as illustrated by example 5. 
Note also that the model does not attempt at representing all possible types 
of ambiguities, but only the structural ones that can typically be resolved by 
restricting word order. Another thing to be noted is that ambiguity, as well 
as the whole complexity measure, are evaluated within the grammar. 
Native speakers of Kikongo, to use the example from the introduction, 
would probably find Japanese past tense ambiguous, but ambiguity of 
Japanese past tense is measured based on the requirements of Japanese 
grammar, not that of Kikongo. 

Since there is no ambiguity in grammars G1, G2, G3, and G4, their AC 
values remain the same as the AC' values in (15). According to this, G2 is 
the least complex grammar of the three. However, why should G1 be more 
complex than G2? It uses one less conveyor and therefore cannot permit 
completely free word order without creating ambiguity. It is impossible to 
achieve a smaller value of AC with only two conveyors. In this sense, G1 is 
an optimal grammar when n = 3 and k = 2, and so is G2 when n = 3 and k = 
3. Therefore, the two grammars should be equally complex. This already 
means information-relative grammar complexity since it is analyzed here 
how complex the grammatical structure is in comparison to an optimal 
structure. The optimal grammatical structure uses the same number of con-
veyors and conveys the same information, but has the smallest possible 
value of AC. The formula for information-relative grammar complexity, 
IRC, can be derived by scaling AC, 
 

 IRC = w' γ k, 
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where w' is a weight determined so that IRC = 1 when the grammatical 
structure is optimal. It is convenient to write w' as w' = w/n, which gives the 
final formula for measuring grammar complexity, 

 

(17) IRC = 
n
kw

n
kw ⋅

−
′

⋅=⋅
0ρρ

ργ . 

 
This formula is essentially the same as the one in (Vulanović 2003). 

Let Γk,n denote the class of grammars that all have k conveyors in set C 
and n SSPFs in set F. Then the formal definition of an optimal grammar is 
related to the following problem: 

 
 Maximize AC. Within the class Γk,n of grammars, find a mapping Φ and set R so 

that each element of F appears exactly once in Φ, no sentence is ambiguous (ρ0 = 
0), and γ has the greatest possible value. 
 

This problem is not always solvable. For instance, if k > n, Φ cannot be 
constructed as required. But, if there is a solution (which does not have to 
be unique), then this solution is an optimal grammar which is considered to 
have the least possible amount of complexity in Γk,n. The IRC measure of 
complexity of this grammar is set equal to 1 by the appropriate choice of 
the weight w. The same w is then used for measuring IRC of all grammars 
in Γk,n.  

To illustrate this, let us consider G1, GE, and G5, which all belong to 
Γ2,3. As discussed above, G1 is an optimal grammar in Γ2,3 and IRC1 = 1 by 
definition. Setting the right-hand side of (17) equal to 1, we get 
 

1
3
2

03
6

=⋅
−

⋅w , 

 
which gives w = 3/4. The same value of w is used in (17) for all other 
grammars in Γ2,3. Thus,  
 

IRCE = 3
3
2

01
6

4
3

=⋅
−

⋅      and     IRC5 = 
2
3

3
2

46
6

4
3

=⋅
−

⋅ . 

 
In general, when finding an optimal grammar within Γk,n all possible 
matrices Φ should be considered and for each, ρ' and the maximum number 
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ρ* of orders in R should be found. The greatest of the resulting γ values 
identifies an optimal grammar. The examples thus far are relatively simple 
and there are not too many possibilities to explore. In Γ2,3, Φ has to look 
like in (10) and then it is easy to see that ρ' = 6 and ρ* = 3. In Γ3,3, the only 
choice of Φ is like in (11) and ρ' = ρ* = 6. This is why G2 is an optimal 
grammar in Γ3,3. Then, since by definition IRC2 = 1, (17) implies that w = 1 
for the whole class: 
 

11
3
3

6
6

=⇒=⋅⋅ ww . 

 
G3 is in the same class of grammars and therefore 
 

IRC3 = 2
3
3

6
121 =⋅⋅ . 

 
As illustrated by class Γ3,3, it follows that w = 1 anytime k = n. This value is 
then extended to the case k > n in which there is no optimal grammar. 
Grammar G4 is in Γ5,3 and w = 1 is used in (17) to evaluate its IRC: 

 

IRC4 = 
3
5

3
5

24
241 =⋅⋅ . 

 
Another Γ5,3-grammar is considered below to illustrate further how ρ' is 
calculated. 
 
Example 6. Let in this abstract example Φ be like in example 4, but let R 
have the following ρ = 12 elements: 

 
R = Per{(Nom1, S), (Acc1, O), P}U Per{(Nom2, S), (Acc2, O), P}. 

 
Suppose the parsing analysis, used to determine ρ', has access to set R. In 
this example, R shows also that some combinations of SSPFs are not 
permitted, e.g. S conveyed by Nom1 cannot be combined with O conveyed 
by Acc2. If this information is available to the parser, then ρ' = 12, making 
this grammar, G6, equally efficient as G4. This cannot be accepted since the 
restricted combinations of SSPFs represent additional rules in R and, 
therefore, G6 should be more complex, i.e. ρ' should be greater than 12. For 
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this reason, the parser should only rely on Φ and F, and not at all on R. In 
this example, Φ shows that there are additional combinations of conveyors 
(not just Nom1Acc1V, Nom2Acc2V, and their permutations) that provide the 
information contained in set F. Whenever this happens, ρ' should be evalu-
ated based on an enlarged set R, which contains all possible combinations 
of SSPFs, regardless of how they are conveyed. Such an enlargement 
makes the present R equal to the set in example 4. Therefore, ρ' = 24 and 
 

AC6 = 105
12
24

=⋅ ,     IRC6 = 
3

10
3
5

12
241 =⋅⋅ . 

 
Table 1 summarizes all AC and IRC values calculated up to this point. It 
shows how the scaling used to evaluate IRC changes AC to IRC. The 
relative position of each grammar within its class remains unchanged, but 
the IRC values are smaller and closer. IRC makes the grammars in Γ2,3 
comparable to Γ3,3. This is like using the same yardstick to measure 
grammars that differ considerably, which shows one possible way of 
overcoming, on a small scale at least, what Miestamo (2006a, 2006b, to 
appear) calls the problem of comparability.  

 

Class Grammar AC IRC

G1 4 1 

GE 12 3 

Γ2,3

G5 6 1.5 

G2 3 1 Γ3,3

G3 6 2 

G4 5 1.67Γ5,3

G6 10 3.33

 

Table 1. Complexity values for grammars in examples 1–6. 
 

The proposed formula (17) is certainly not the only one that can be used for 
measuring grammar complexity in the present framework. Indeed, this 
formula has evolved from different versions that I have used in my work, 
and, even here, some modifications are proposed. However, my intention 
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from the very beginning (Vulanović 1991) has been to represent grammar 
efficiency as machine efficiency, which I have already mentioned in the 
introduction. In grammars, the useful output is the information that can be 
deduced from each sentence and the input consists of the grammatical 
devices that are used to convey this information. Therefore, the measure of 
grammar efficiency, Eff, can be defined as 

 

(18) Eff = κ 
Con
Info , 

 
where Info and Con are some appropriate measures of the information 
conveyed and of the conveyors respectively, and where κ is a constant of 
proportionality. Since I view grammar efficiency and complexity as recip-
rocal to each other, (18) is nothing else but the reciprocal of the IRC 
formula (17): 

 

(19) Eff = IRC–1 = 
γk
n

w
⋅

1 , 

 
with κ = 1/w, Info = n, and Con = kγ. Maximally efficient grammars in 
Vulanović (2003) are what I call here “optimal grammars.” The process of 
transforming the input into the output, as modeled by mapping Φ and set R, 
is also represented in Con through the γ factor. At an earlier stage 
(Vulanović 1993), Con was represented as k + γ', with γ' denoting a 
weighted version of γ. The switch to (19) was made because of simplicity: 
w is the only weight needed in this formula. In the future, a need may arise 
to fine-tune (19) further and include some additional weights in it. It is not 
clear at this stage how the new weights should be defined. I do not have 
enough intuition to tell me how to compare complexities of GE, G5, and G3 
for instance. So, until there is an indication that new weights are needed, it 
seems reasonable to keep them as simple as possible, i.e. all of them, 
except w in some cases, equal to 1. Moreover, there are not so many 
weight-assigning possibilities as it may seem. All of them reduce to the 
following two: redefine w and introduce a weight for ρ. If some weights are 
given to n, k, or ρ', they, together with 1/w, form a new coefficient of 
n/(kγ). This is equivalent to redefining w. Also, if a weight a is assigned to 
ρ0, it can be factored out of the expression ρ – aρ0, which then changes w 
and the coefficient of ρ.  
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I am not sure how to interpret Hawkins’ statement (2) and his stand on 
the relation between complexity and efficiency. How does efficiency 
“involve more or less complexity?” What is the “required minimum of 
complexity?” The latter may be related to my optimal grammars, but I 
could not find in Hawkins (2004) a definite explanation for (2). I only can 
comment on Hawkins’ concept of grammar efficiency. It is obviously very 
different from mine, since I do not use phrase-structure trees, nor do I 
speak in terms of preferences of the human processor, which I have no 
intention of emulating. There are no relations of combination and depen-
dency in my model, so there is nothing in it like Hawkins’ principle (3i). 
However, my model seems to have some common points with principles 
(3ii) and (3iii) when the stated preferences are understood as descriptions 
of factors that increase efficiency. If k is interpreted as the “number of 
forms” of (3ii), then there is an agreement between Eff in (19) and (3ii) in 
the sense that Eff increases when k becomes smaller. Similarly, if n is 
viewed as the “properties that are assignable” of (3iii), then there is a 
connection between (3iii) and (19) because greater values of n increase Eff. 
On the other hand, there seem to be deeper differences between my concept 
of IRC, as given in (17), and language complexity as seen by Hawkins. 
While I separate forms and their syntactic/semantic/pragmatic properties 
as, respectively, input and output in my model, Hawkins considers them 
factors equally contributing to complexity, see (1). This indeed looks to me 
like a double count—a language has many forms mainly because they are 
needed to mark many SSPFs. In (17), complexity increases only if there is 
an unnecessary form, that is, if the same linguistic information can be 
conveyed with fewer forms without increasing word order restrictions. 
McWhorter’s criterion (4iii) (and (5i) to some extent) also lists semantic 
and pragmatic distinctions as complexifying factors. Such distinctions are 
represented in (17) by n and, therefore, their increasing number dimin-
ishes(!) complexity, everything else being equal. This is because SSPFs are 
viewed as the output, something we get from the grammar. In reality, 
though, greater complexity can be expected when n is increased, since 
greater values of n are typically accompanied with greater k and ρ', while, 
usually, ρ is not maximized.  
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5. Further examples 

In Vulanović (2003), n, as a factor in (19), represents a more complicated 
system (denoted by F) of SSPFs. In the previous examples, F is simply 
{F}, but it may be a family of several sets of SSPFs. Examples in this 
section illustrate what is meant by F. There is no ambiguity in any of them, 
thus ρ0 = 0. Also, k ≥ n so that w = 1 and the connection between AC and 
IRC is simply AC = n·IRC. For this reason, only IRC values are calculated 
below. 

 

Example 7. Consider simple intransitive and transitive sentences in the 
absence of object marking. There are three conveyors: N, intransitive verbs 
Vi, and transitive verbs Vt. An intransitive sentence conveys S and P, 
whereas a transitive sentence conveys S, O, and P, which means that F = 
{{S, P}, {S, O, P}}. The corresponding mapping is 

 
Φ:     N  S, O,     Vi  P,     Vt  P, 

 
and k = n = 3. Suppose word order is rigid, 

 
R = {S(Vi, P), S(Vt, P)O}, 

 
thus ρ = 2. It also holds that ρ' = 6 + 4 = 10, a count resulting from 6 
attempted parses of transitive sentences (like in example 1) and 4 attempted 
parses of intransitive sentences: two of them are SP and PS (recall from 
example 6 that all possible orders should be taken into account, not just 
those permitted in R), while OP and PO are the other two—they are 
attempted before it is realized that there is no other N in the sentence (the 
information that Vi only requires one N is stored in R and is not used in 
parsing). The above counts give 
 

IRC = 5
3
3

2
101 =⋅⋅ . 

 
If the number of orders in R is increased to ρ* = 2 + 3 = 5, which still 
preserves all sentences unambiguous, then IRC decreases to 10/5 = 2. 
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Example 8. In order to bring the above example closer to English, let us 
now assume that there is a class of verbs, denoted simply as V, which can 
be used both transitively and intransitively. This structure is modeled as 

 
Φ:     N  S, O,     Vi  P,     Vt  P,     V  P, 

 and 

R = {S(Vi, P), S(Vt, P)O, S(V, P), S(V, P)O}. 

 
It should be intuitively clear that this grammar is more complex than the 
one in example 7. The IRC measure confirms this: k = 4, n = 3, ρ = 4, and 
ρ' = 6 + 6 + 4 + 4 = 20, giving 
 

IRC = 67.6
3

20
3
4

4
201 ==⋅⋅ . 

 
The numbers contributing to the value of ρ' are: 6 attempted parses of the 
three permutations of NNVt; 6 attempted parses of the three permutations 
of NNV; 4 attempted parses of the two permutations of NVi; and 4 
attempted parses of the two permutations of NV. 

In this case, ρ can be increased to ρ* = 2 + 3 + 2 + 3 = 10, which 
reduces IRC to 8/3 = 2.67. This grammatical structure is still more complex 
than the corresponding one in example 7. 
 
Example 9. Luiseño, a Uto-Aztecan language (Steele 1978), has free word 
order and makes a difference between animate (An) and inanimate (In) 
nouns. The unmarked form of these nouns is used to indicate S in the case 
of animate nouns and O in the case of inanimate nouns, which cannot be 
used as subjects. Animate nouns have also a marked form, denoted here as 
An-Acc, to indicate O. Simple transitive sentences with this structure can 
be modeled by the mapping 

 
Φ:     An  S,     An-Acc  O,     In  O,     V  P, 

 and by  

R = Per{S, (An-Acc, O), P} U Per{S, (In, O), P}. 

 
In this case, k = 4, n = 3, and ρ = ρ' = 3! + 3! = 12, which implies  
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IRC = 33.1
3
4

3
4

12
121 ==⋅⋅ . 

 
IRC > 1 since this is not an optimal grammar. 

In the next three examples, simple active and passive transitive 
sentences are modeled together, forming a different family F from the one 
in examples 7 and 8. In addition to S, O, and P, agent (in the sense that 
English passives have agents), denoted here by A, is another SSPF to be 
conveyed. This means that n = 4. The two types of sentences correspond to 
F ={{S, O, P}, {S, A ,P}}. In all three grammars, A is marked by the 
agentive (Agt) case.  

 
Example 10. This is an abstract example, used for a comparison to ex-
amples 11 and 12 below. It shows that one verbal form suffices for con-
veying F. Let 

 
Φ:     Nom  S,     Acc  O,     Agt  A,     V  P,  

 and 

R = {PSO, PAS}. 

 
It holds that k = 4, ρ = 2, and ρ' = 3! + 3! = 12, implying 
 

IRC = 6
4
4

2
121 =⋅⋅ .  

 
When ρ is increased to ρ* = 3! + 3! = 12, we have an optimal grammar 
because IRC = 1. 
 
Example 11. Consider the structure like in English, where the phrase “by 
N” is meant as Agt,  

 
Φ:     Nom  S, O,     Agt  A,     Act  P,     Pas  P. 
 

There are ρ = 2 strings in R, 
 
R = {S(Act, P)O, S(Pas, P)A}. 
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Although here k = 4, like in the previous example, the conveyors are used 
in a more complicated way. In particular, two verbal forms are not 
necessary. Even if all 3 permutations of S(Act, P)O and all 6 permutations 
of S(Pas,P)A are included in R (this still preserves unambiguity of all 
sentences), the grammar remains far from an optimal one. This is because 
there are other conveyor combinations that produce the information in F. 
Based on the discussion in example 6, all those combinations should be 
considered when ρ' is calculated. Hence, the count of parsing attempts is 
applied to the sentences Nom V Nom and Nom V Agt and all their 
permutations, where V stands for both Act and Pas. This gives 2(3 + 6) = 
18 sentences in all, with a combined number of ρ' = 2(6 + 6 + 3) = 30 
parsing attempts. Each of the three permutations of Nom V Nom has two 
parses (cf. example 1); the three permutations of Nom V Agt, in which 
Nom precedes Agt, also require two parsing attempts each (since Nom can 
initially be interpreted as either S or O); and finally, there is one parse of 
each of the three permutations of Nom V Agt in which Agt precedes Nom 
(Agt is unambiguously interpreted as A and then Nom has to be S). Formu-
la (17) implies  
 

IRC = 15
4
4

2
301 =⋅⋅ , 

 
which indicates greater complexity than in example 10 or in the case of 
active sentences alone (recall that these are modeled by GE, for which IRC 
= 3). 

If all possible unambiguous word orders are permitted, ρ increases to 
ρ* = 2(3 + 6) = 18. This decreases IRC to 30/18 = 5/3 = 1.67. 

 
Example 12. The structure of Maori (Hohepa 1969, Chung 1978, Vulano-
vić 1997) is similar to the grammar in example 10, but, like English, Maori 
has active and passive verbal forms. Therefore,  

 
Φ:     Nom  S,     Acc  O,     Agt  A,     Act  P,     Pas  P. 

 
Fixed word order, 

 
R = {(Act, P)SO, (Pas, P)AS}, 
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is assumed for simplicity, and this enables a direct comparison to examples 
10 and 11. Regardless of R, 24 sentences should be considered in order to 
find ρ'. This is so because there are 6 permutations of each Nom Acc V and 
Nom Agt V, where V = Act, Pas. Each of the permutations has exactly one 
parse, thus ρ' = 24. Since k = 5 and ρ = 2, it follows that  
 

IRC = 15
4
5

2
241 =⋅⋅ , 

 
which happens to be the same as in example 11. The English model has one 
conveyor less, but greater processing difficulty. However, if in the Maori 
model ρ is maximized to ρ* = 24, which still leaves all sentences unambig-
uous, then the above IRC drops to 5/4 = 1.25. This is less complex than the 
corresponding structure with maximized ρ in example 11. 
 
Example 13. This last example describes formally a situation similar to 
McWhorter’s (2001) comparison of Kikongo and Japanese (see the intro-
duction).  

Consider three languages which have almost identical grammatical 
structures, the only difference being that languages A and B have one more 
verbal form than language C. The extra verbal form is used in A to convey 
a tense which does not exist in C, whereas in B it merely duplicates the 
usage of another verbal form. To represent this, it is sufficient to model 
simple intransitive sentences (transitive sentences or intransitive and transi-
tive sentences modeled together give similar results). Suppose word order 
is free and there are no ambiguous sentences, so that ρ = ρ' and ρ0 = 0. This 
gives γ = 1 in (16) and (17). Let languages A and B have k = m + 1 
conveyors: N and m verbal forms. Each of the verbal forms conveys a 
different tense in A, whereas B has only m – 1 tenses. Therefore, the 
system of SSPFs is 

 
F  = {{S, Pi} | i = 1, 2,..., m},  

 
where the tenses are denoted by Pi, i = 1, 2,..., m (Pm – 1 = Pm in B). For 
language A, n = m + 1, so that IRCA = 1. The grammar of A is therefore 
optimal. At the same time, n = m in B and IRCB = (m + 1)/m > 1.  B
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Consider now language C with k = m conveyors: N and m – 1 verbal 
forms, each of which conveys a different tense. Since n = m, it follows that 
IRCC = 1.  

Therefore, A and C have the same information-relative complexity 
and B is more complex. Absolute complexity does not reveal the difference 
between A and B. Formula (16) gives ACA = ACB = m + 1, which indicates 
greater complexity than in C, where AC

B

C = m. 

6. Conclusion 

In this paper, I presented a model-based mathematical formula for measur-
ing grammar complexity. The formula is a modification of the metric that I 
proposed in Vulanović (2003). Through a detailed derivation process, 
illustrated by many examples, I explained the formula and compared it to 
complexity criteria by other authors. Although the final formula is by no 
means unique, I was guided by the concept of machine efficiency (com-
plexity is defined as reciprocal to efficiency) that I extended to grammars 
for the first time in Vulanović (1991). When there were choices how to put 
complexity factors together, I followed what seemed to be the simplest 
option. It should be pointed out that in this model there is no separate 
definition of grammar complexity followed by a formula for measuring it. 
In fact, the formula is the definition of grammar complexity in the model. 
This is why the only way of confirming the validity of the formula is to see 
what kind of numerical values it assigns to the complexity of grammatical 
structures that can be ranked based on intuition. Usually, when we compare 
two structures that are relatively similar, we can tell which one is more 
complex. In such cases, as illustrated by several examples, the complexity 
formula correctly assigns a greater value to the more complex grammar. 
This can be used to represent various syntactic changes, since a syntactic 
change can be viewed as a sequence of slightly different grammars. Then 
the complexity (or efficiency) of each grammar can be measured using the 
proposed formula, see Vulanović (1997, 2005a) for instance.  

Other questions about how “realistic” the formula is are hard to 
answer because there is no ground for comparison. For instance, we have 
found complexities of two grammars, GE and G2, to be 3 and 1.5 respective-
ly. Does this mean that GE is exactly twice as complex as G2? Yes, in the 
model! However, in order to answer this outside the model, we have to 
know what “exactly twice as complex” means. At this stage, there is no 
other definition or measure of complexity that can tell us this.  
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The formula measures what I call the information-relative complexity. 
Example 13 shows that this kind of complexity gives more reliable results 
than absolute complexity, the other type of complexity considered in this 
paper. Three hypothetical languages, A, B, and C, are compared in example 
13. The only difference between them is in the number of verbal forms and 
tenses. A and B have the same number of verbal forms and C has one 
verbal form less. Because of this, languages A and B have the same 
absolute complexity, while the absolute complexity of C is less. However, 
the need for an additional verbal form can be justified in A by the need to 
convey one more tense, but this justification cannot be extended to B, 
which has the same number of tenses as C. Thus, relative to the information 
(tenses in this case) that the languages have to convey, A is less complex 
than B. This shows that absolute complexity is not enough for an accurate 
comparison of different grammatical structures. It can be used to compare 
languages that convey the same type and amount of linguistic information, 
otherwise, comparisons based on absolute complexity may be misleading. 
Information-relative complexity places such languages in a correct relation-
ship.  

If it seems reasonable to compare some languages, like A and B 
above, on the scale of information-relative complexity, then why should 
not all languages be compared on the same scale? When A and C are 
compared like that, it turns out that they are equally complex. For informa-
tion-relative complexity, the main question is how complex the language is 
in comparison to the simplest possible structure that conveys the same 
amount of linguistic information. This is what the present paper is mainly 
about. 
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