

A Man of Measure
Festschrift in Honour of Fred Karlsson, pp. 422–431

Kimmo Koskenniemi

Notes on the Two-Level Morphology

Abstract

Some 24 years have passed since the advent of the two-level morphology. One
motivation for the invention of the two-level model was computational efficiency. The
power and capacity of present computers is now more than thousand times greater than
what was available then. This article briefly relates the two-level model to the current
state of the technology and identifies some possible areas where further work in the
two-level framework would be worth while.

1. Background

Two-level morphology emerged in 1981–82 (Koskenniemi 1983) as a
branch of the finite-state transducer cascade technology which Ronald
Kaplan and Martin Kay had been developing since the 1970’ies (Kaplan
and Kay 1994). Around 1980, the available memory of computers was
about 1/10,000th of the memory of ordinary present computers, and the
speed of computation was about 1/1000th of the speed of present
computers.

In those days, the transducer technology was feasible for simple rule
sets, but it was prohibitively heavy, if several transducers had to be
composed together. The morphological (or graphemic) alternations of
English could be handled then, but for Finnish, so many rules were needed
that the results of the composition would have been too large. The obvious
incentive for inventing the two-level model was to find a more tractable
way to perform the required computations.

The two-level morphology turned out to be more than just as a
computational trick or an optimized implementation of traditional
phonological rewrite rules. It implied a different framework and a new
interpretation for morphophonological alternations. Having fully parallel

NOTES ON THE TWO-LEVEL MORPHOLOGY

423

rules instead of the usual sequential cascade of rules had consequences
such as:

1. There were no intermediate representations or results, i.e. only the
morphophonemic and the surface forms existed.

2. The rule ordering did not matter. The rules could neither feed nor
bleed other rules.

3. The rules were logical constraints defining the relation between the
two representations rather than procedural actions converting strings
to other strings.

4. Two-level rules could refer to conditions also on the surface, i.e. the
final stage of the derivation (such as “ending up between vowels”),
or even refer to relations between the morphophonemic and the
surface (such as a “after a contracted diphthong”). The location of
deletions and epenthesis can be controlled quite explicitly e.g. by
referring to the resulting morphotactic structure.

These properties were partly good news implying certain rigidity and
simplicity. Logical constraints are easy to understand and they have no
opaque interactions. All rules must stick to the truth all the way. Therefore,
one could not fix a fault in a rule by issuing another rule to patch it. The
two-level rules did not tolerate exceptions. Some complicated rule conflicts
and other interactions were also more problematic to handle in the two-
level framework than in the cascading scheme.

The reader is advised to read the Karttunen (1991) or Karttunen and
Beesley (2001) which elaborates the similarities and differences of the
finite-state implementations of the cascaded transducer rules and two-level
rules, and to the Short history of the two-level morphology by Karttunen
(2001) for a more thorough survey.

The original idea was to restrict the use of two-level rules to
alternations which were phonologically conditioned or which represented
phonologically motivated changes. Everything else, i.e. irregular and
purely morphological alternations, was supposed to be taken care of by the
lexicon component. Complicated alternations can described using the
mechanisms of a partitioned and linked lexicon; cf. the Xerox LEXC tool

KIMMO KOSKENNIEMI

424

which is a systematic implementation of lexicons as finite-state transducers
(Karttunen 1993).

In order to overcome some of the problems with the interactions
between two-level rules, Lauri Karttunen devised a rule conflict resolution
scheme which allowed one to write more than one two-level rule for same
morphophonemes. The interactions that were resolved were cases where
several rules give separate permissions for the occurrence of a pair, or
where a rule acts as an exception to another rule, i.e. its context is a subset
of the context of the second. This conflict resolution scheme allowed one to
write more complicated two-level grammars. Thus, one could extend the
domain of the rule component somewhat closer to the generative
phonology. But, the heavy use of the conflict resolution mechanism
resulted in a more complicated compilation and large transducers. (See
below, in section 3, a note of the source of these conflicts.)

As the power and capacity of computers grew, more efficient and
practical implementations cascaded rewriting systems such as the Xerox
XFST, see e.g. (Beesley & Karttunen 2003). Full scale generative
morphophonological descriptions and lexicons can now be handled in this
way.

On the other hand, the rule formalisms for two-level morphology have
been developed to some alternative directions. Partition based rule
formalisms were proposed and their compilation was implemented by
several researchers, including Alan Black, Graeme Ritchie, Stephen
Pulman and Graham Russell (Black & al 1989), (Pulman & al. 1993).
Edmund Grimley-Evans, George Kiraz and Stephen Pullum offer a
different framework for implementing multi-tape versions of two-level
rules and their compilation into finite-state transducers (Kiraz & Pullum
1996, Kiraz 2001). These have been applied for describing Semitic
languages where interdigitation and circumfixing are serious challenges for
all morphological analyzers. The partition based rules (with two and even
with more than two tapes) retain the principle that no intermediate
representations or results ever exist and that rules are strictly parallel. At
least some of them are somewhat more restricted in describing repeated
instances of morphophonemic correspondences.

NOTES ON THE TWO-LEVEL MORPHOLOGY

425

2. Writing and debugging rule systems

One question that has occasionally been raised is whether writing two-level
rules is easier or more difficult than designing rewrite rules. There appears
to be no common measures of ease of writing rules and descriptions, except
perhaps the amount of human effort required for a task. Unfortunately, we
do not have even empirical data about the amount of work needed for
designing morphological systems with different formalisms.

Building a two-level morphological parser consisting of a lexicon and
a set of two-level rules may turn into a mess, unless certain planning and
discipline is followed. The published monographs and articles do not fully
cover the practical side cf. (Koskenniemi 1983 and 1991), so we give some
guidelines here.

We assume here that the target language is in written form, has a norm
and linguistic descriptions such as grammars which describe the inflection
or other morphological and morphophonological phenomena.

1. Collect example words for each inflectional type, and for each
morphophonemic alternation to be described with two-level rules.
These examples are stored in a test file to which one will also put
further examples of each morphophonemic alternation or
phenomenon as needed to define the phenomena.

2. Identify morphemes tentatively within the examples. Add then some
zeroes as necessary so that the morphs corresponding to the same
morpheme are of equal length. Add zeroes to such positions that the
morphs can be aligned with each other so that corresponding
positions represent characters (or phonemes) which could reasonably
alternate with each other.

3. The morphophonemic representations of each example are set up. If
there is no variation among the morphs of a morpheme in a position,
then the character itself can be used. Otherwise, a morphophoneme is
postulated, cf. (Koskenniemi 1991).

Once we have prepared the test file, we can start designing the two-
level rules. A rule for each morphophoneme is needed. If a morphopho-
neme has two alternative realizations, then one will be the default

KIMMO KOSKENNIEMI

426

realization and a rule is needed for the other. We write a rule for the
realization which has a linguistically cleaner and better motivated environ-
ment as a condition. Default realization of the morphophoneme usually
represents the alternative which has no clean or systematic context which
would account for its presence.

The value of the test file is twofold: first, it helps to design the
morphophonemic representation and the rules, and secondly, it gives very
accurate and pinpointed feedback on the possible shortcomings of the rules
being developed. The compiler or the analyzing program gives exact
character locations in the examples and names the rule or rules which fail,
(cf. the TWOLC compiler by Lauri Karttunen at Xerox). The ease and
success of the debugging depends much on how informative the feedback
is. With the two-level compiler the designer of the rules gets quite detailed
hints if something is wrong.

3. Automatic discovery of rules

The article which we referred to above (Koskenniemi 1991) was about
sketching an informal discovery procedure for establishing the morpho-
phonemic representations from paradigms of model words. That procedure
was intended for humans who have at least some linguistic training and
intuitions. It was hinted in the article that the mechanism could be
automated, but nobody appears to have implemented the idea yet.

The underlying idea there was that one assumes a kind of distance
metric among letters or phonemes as a computational formula. With such a
measure, one can find more or less safely the positions for inserting the
zeroes in the examples discussed above. The zeroes would be positioned so
that the sum of the distances between corresponding characters of the same
morph would be minimized. For example, if we have stems (and endings)
such as love(n) and lov(ia), then one zero needs to be inserted to the latter
stem. Suppose that we insert it in the middle, e.g. resulting in a stem lo0v,
where the distances would be summed from pairs l-l, o-o, v-0, e-v.
Apparently, the two last pairs have a great distance in our metric. Inserting
the zero to the end would result in distances from pairs l-l, o-o, v-v, e-0.
Here, the first three pairs certainly have a null distance, and the deletion of
a vowel e-0 has a fairly short distance. If we have a reasonably good
approximation for the distance metric, we can expect that this procedure
will converge into good and feasible insertions of the zeroes.

NOTES ON THE TWO-LEVEL MORPHOLOGY

427

Once the zeroes are in place, the morphophonemic representations
become fixed, if we simply define each alternation pattern of letters to be a
morphophoneme of its own, e.g. i-e-0, t-d, t-0 etc. We can use the sequence
of alternatives as the name of the morphophoneme. This step of naming
and determining the morphophonemic representations is quite deterministic
and it poses no computational problems. In this approach we do not
minimize the number of morphophonemes. If there is an alternation among
different characters, it results in a different morphophoneme—even if a
trained linguist would prefer to see the same underlying sound on the
morphophonemic level.

The discovery of the two-level rules can utilize the same metric as was
used for the positioning of the zeroes. One needs, however a model for rule
types which are considered discoverable. Alternations triggered by the
immediately following (or preceding) character are easy to discover and
describe with rules. One simply collects the immediately following (or
preceding) characters for each possible surface character of a morpho-
phoneme, e.g. one set for e-e and another set for e-0. One computes the
within set distances of the context characters for each realization. Good
candidates for rules are those context sets where the within set distances are
small, i.e. there is a generalization of the contexts (e.g. as “vowel” or
“voiced consonant”).

Similarly, one can program other rule types which are possible or
common in the languages of the world. For vowel harmony rules, one can
define general patterns according to vowel qualities (such as rounded/
unrounded, front/back, height etc.). For harmonies, one is interested in sets
of vowels in the whole word-form rather than only in immediately
neighbouring characters.

An important observation here is that many of the complications of
rule interactions appear to disappear as we let the procedure to establish a
larger number of morphophonemes than what linguists typically postulate.
The left arrow rule conflict with fully included contexts vanishes because
the general case and the more restricted case deal with different morpho-
phonemes. The need to use multiple contexts or the need to resolve right
arrow rule conflicts typically arises in occurrences in different positions. It
probably is a good policy in the procedure to establish separate morpho-
phonemes even for similar alternation patterns if they occur in morpho-
tactically different positions. Our morphophonemic representation is now
not really a generalization based on linguist’s intuitions but rather just an
account of actual alternations.

KIMMO KOSKENNIEMI

428

What makes the two-level framework here more interesting and
promising than the traditional rewrite rules, is its smaller dimensionality.
There are dramatically fewer representations to choose from because the
insertion of zeroes already determines the rest of the process. Discovering
the insertion itself only implies a small amount of enumerating. When the
zeroes are in place, the establishing of morphophonemic representation is
direct, and each rule can be discovered in isolation, and without
interactions with other rules. This allows for repeating the process for
several candidate positions of the zeroes, not only for the one which
appeared to produce the minimal distances for the insertions. Thus, it is
possible to search for a global optimum where both the positioning of the
zeroes and the contexts of the two-level rules are taken into account with
appropriate weights.

If one compares the above method with the discovery of cascaded
rewrite rules, one notes the difference. With cascaded rules, one has to
establish the underlying representation, the rules, and the sequencing of the
rules, and these all affect each other. There is a distinct representation
between each application of rules. If there are plenty of rules, the
computation is likely to become difficult. (The discovery may be
computationally heavy and/or sensitive to the input samples given to the
procedure.)

4. Application to language learning

Computer assisted language learning (CALL) could benefit from the
special property of two-level grammars, namely from the independence of
each rule from the other rules. Let us suppose that a student is prompted to
produce a certain inflected word-form involving several distinct
morphophonological rules. A student of Finnish might try to produce
parroista (‘from beards’ where the nominative singular is parta) and end
up in producing parraista. Using traditional programs, the student would
probably only get a feedback which indicates that the answer was not
correct. But, within the two-level framework, a program can compare the
reply and the morphophonemic representation of the correct target form
using the same method as the linguist uses when testing rule sets. In our
example, the representations to be compared would be:

p a r r~t a~o i~j s t a~ä
p a r r a i s t a

NOTES ON THE TWO-LEVEL MORPHOLOGY

429

The program could silently notice that the consonant gradation went fine,
the vowel harmony was correct, the plural i was ok, but the stem final
vowel alternation still needs training. Thus the feedback to the student
could be mostly encouraging and the corrective actions would be directed
to the essential areas.

One can claim that this kind of selective checking the correctness of
alternations is simpler in the two-level framework than in the cascaded
rewriting grammar. At least the mechanism needed is already known
(similar to pair-test in Xerox TWOLC).

5. Summary

Currently, there are two common ways to describe and handle
morphophonemic alternations in morphological analysis: the two-level
model and the cascaded rewrite rule model. Both are actively used in
current morphological parsers of commercial or academic origin. Probably
a significant part of the present day spellers, inflecting synonym
dictionaries and similar products make use of the two-level rules—if not
the majority of those used in this part of the world. Some commercial
parties, such as Xerox and ATT Research have opted for the rewrite rule
model whereas some others use the two-level framework.

When the two-level model was first introduced, it was thought to suit
for describing phonologically motivated, synchronic and at least partly
natural phenomena rather than to accounting for more remote relations
depending on long historical developments. Improvements in the two-level
formalism have not changed this setup. Maybe one can still think that the
two-level rules capture a part of the idea of phonological rules as some
separable components of our linguistics competence.

A fully composed morphological analyzer as a finite-state transducer
is independent of which of the two rule formalisms have been used. The
two-level model can be efficiently interpreted even without this
composition. The run-time code for that task is small enough to fit into a
single sheet of paper.

Presently, the software supporting the rewrite model is quite
proprietary even if it is available for purely academic applications, but also
full scale two-level compilers have restrictions for their free use. It would

KIMMO KOSKENNIEMI

430

be very desirable that truly free alternatives of both types would become
available.

References

Beesley, Kenneth R. & Lauri Karttunen (2003) Finite State Morphology. Stanford, CA:
CSLI Publications, Stanford University.

Black, Alan, Ritchie Graeme, Stephen G. Pulman& G. J. Russell (1987) Formalisms for
morphographemic description. In Proceedings of the 3rd Meeting of the European
Chapter of the Association for Computational Linguistics, (Copenhagen), pp.11–
18.

Grimley-Evans, Edmund, George Anton Kiraz & Stephen G. Pulman (1996) Compiling
a partition-based two-level formalism. In COLING 1996: The 16th International
Conference on Computational Linguistics, Volume 1: 454–459.

Kaplan, Ronald M. & Martin Kay (1994) Regular Models of Phonological Rule
Systems. Computational Linguistics 20.3: 331–378.

Karttunen, Lauri (1991). Finite-State Constraints. In The Proceedings of the
International Conference on Current Issues in Computational Linguistics. June
10-14, 1991. Universiti Sains Malaysia, Penang, Malaysia.

—— (1993) Finite-State Lexicon Compiler. Technical Report ISTL-NLTT-1993-04-02.
Palo Alto, CA: Xerox PARC.

Karttunen, Lauri & Kenneth R. Beesley. (2001) A short history of two-level
morphology. A paper presented at ESSLLI 2001. URL:

 http://www.helsinki.fi/esslli/evening/20years/twol-history.pdf
Karttunen, Lauri, Ronald M. Kaplan & Annie Zaenen (1992) Two-Level Morphology

with Composition. In COLING 1992: The 15th International Conference on
Computational Linguistics, Volume 1, pp. 141–148.

Karttunen, Lauri, Kimmo Koskenniemi & Ronald M. Kaplan (1987) A compiler for
two-level phonological rules. In Mary Dalrymple, Ronald Kaplan, Lauri
Karttunen, Kimmo Koskenniemi, Sami Shaio & Michael Wescoat (eds.) Tools for
Morphological Analysis. Report CSLI-87-108. Stanford, CA: Center for the Study
of Language and Information, Stanford University.

Kiraz, Georg Anton (2001) Computational Nonlinear Morphology with Emphasis on
Semitic Languages. Studies in Natural Language Processing. Cambridge:
Cambridge University Press.

Koskenniemi, Kimmo (1983) Two-level Morphology: A computational model for word-
form recognition and production. Publications of the Department of General
Linguistics, University of Helsinki 11. Helsinki: University of Helsinki.

—— (1991) A discovery procedure for two-level phonology. In Laura Cignoni & Carol
Peters (eds.) Computational Lexicology and Lexicography. A Special Issue
Dedicated to Bernard Quemada, Volume 1, pp. 451–465. Linguistica
computatzionale VI. Pisa: Giardini Editori e stampatori.

NOTES ON THE TWO-LEVEL MORPHOLOGY

431

Pulman, Stephen G. & Mark R. Hepple (1993) A feature-based formalism for two-level
phonology: a description and implementation. Computer Speech and Language
7.4: 333–358.

Contact information:

Kimmo Koskenniemi
Department of General Linguistics
P.O. Box 9 (Siltavuorenpenger 20 A)
FI-00014 University of Helsinki
kimmo(dot)koskenniemi(at)helsinki(dot)fi
www.ling.helsinki.fi/~koskenni

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

