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ABSTRACT 

We propose a method that automatically describes teacher talk. The method allows us to 
describe and compare classroom lessons, as well as visualizing changes in teacher 
discourse throughout the course of a lesson. The proposed method uses a machine learning 
model to infer topics from school textbooks. Certain topics are related to different contents 
(e.g. kinematics, solar system, electricity), while others are related to different teaching 
functions (e.g. explanations, questions, numerical exercises). To describe teacher talk, the 
machine learning method measures the appearance of the inferred topics throughout each 
lesson. We apply the proposed method to a collection of transcripts from physics lessons, 
as well as discussing the potentialities of integrating the proposed method with other 
kinds of automatic and manual classroom lesson descriptions.  

 

INTRODUCTION 

Classroom talk is important for learning interactions to take place. Therefore, 
analyzing the content and quality of teacher and student talk has been an active 
area of educational research (e.g., Mortimer & Scott, 2003). Examples of content 
analysis include counting the number of questions, describing which concepts 
are dealt with, and identifying who is talking. Analyzing the quality of teacher 
and student talk includes looking at what kind of questions are posed, as well as 
whether the talk is dialogic or interactive. The results of these studies are often 
published as frequencies and cumulative counts. However, learning does not 
occur momentarily at the end of each lesson, but over time. The frequency 
descriptions do not reveal the temporal dynamics of teaching and learning and, 
consequently, many researchers have underlined the importance of temporal 
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analysis of teaching-learning events (e.g. Mercer, 2008; Knight, Wise, & Chen, 
2017; Csanadi, Eagan, Kollar, Shaffer, & Fischer, 2018). 

Working with automatic descriptors of classroom talk (i.e. extracted 
automatically by a computer) is more cost-effective than traditional 
observational methods. It is also faster and can be used for online processing of 
teacher talk. Therefore, using automatic descriptors may help focus traditional 
methods on the most critical aspects of the dynamics of a lesson. The potential of 
automatic content analysis has already been acknowledged in the field of 
education (Rosé et al., 2008; Araya et al., 2012; Wang, Pan, Miller, & Cortina, 2014; 
Scheihing, Vernier, Born, Guerra & Cárcamo, 2016, Donnelly et al., 2017). For 
instance, Blanchard et al. (2015) evaluated different automatic speech recognition 
systems when analyzing teacher talk during noisy lessons. Kelly, Olney, 
Donnelly, Nystrand, and D’Mello (2018) analyzed teacher questions in classroom 
situations. They used automatic speech recognition (ASR), natural language 
processing (NLP), and machine learning to train computers to recognize whether 
teacher questions were authentic or rhetorical.  

There are several automatic methods for summarizing text (Gambir and Gupta, 
2017). In general, both unsupervised and supervised machine learning methods 
need large amounts of data. This is also the case for topic models, a class of 
unsupervised machine learning methods which infer topics as groups of words 
that occur together in a text. Topic models have been applied in a variety of 
contexts and have been preferred in cases where interpretability and speed are 
essential (Boyd-Graber, Hu & Mimno, 2017).  

Topic models can compute a numerical representation of the topics discussed 
during a lesson. A topic inferred by a topic model is defined by a large list of 
words, sorted by a degree of belonging to the topic. To determine if a topic was 
discussed in a lesson, none of the words that define the topic are strictly 
necessary. Instead, a topic is recognized by the presence of a combination of 
words with a high degree of belonging, a combination of words that may vary in 
different contexts. For example, to recognize a topic related to kinematics, there 
is no need for the words “motion” or “velocity”. The topic might instead be 
deduced by the presence of other words such as: “position”, “change” and 
“time”. This feature makes the topic models suitable for describing teacher talk, 
as it can adapt to different variations of language.  

One way of obtaining descriptors of teacher talk would be to train a topic model 
using lesson transcripts. However, the viability of this approach is limited as 
lesson transcripts are difficult to obtain. School textbooks, on the other hand, are 
widely available and can be found in different languages. Textbooks provide a 
large collection of written texts in which content is labelled by subject and grade. 
Since textbooks are usually aligned with the national curriculum, topic models 
make it possible to compare teaching across different countries.   

For these reasons, we propose training a topic model using school textbooks in 
order to find a characteristic set of topics that can be used to describe the lesson 
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transcripts. To describe teacher talk, we quantify the appearance of the inferred 
topics throughout a lesson. We show that this approach can be used to describe 
a single lesson or to compare different lessons, as well as describing the temporal 
development of a lesson. 

Our research questions (RQ) are the following: 

● RQ1: What kind of automatic lesson descriptors does the topic model 
capture? 

● RQ2: How do these descriptors differentiate between lessons? 

● RQ3: How does the automatic lesson descriptor provide insights into the 
temporal development of a lesson?  

Answering these questions will help us understand the scope and limitations of 
the proposed method for describing speech in learning environments. RQ1 aims 
to determine what kind of content analysis can be automated. RQ2 aims to 
answer whether the method is able to capture and explain differences between 
lessons, and thus whether it is suitable for monitoring changes in teacher 
practice. RQ3 aims to capture speech patterns during lessons that could later be 
related to student learning gains in future research. 

 

METHOD 

Data collection 

The proposed method has two sources of data: school textbooks and classroom 
lesson transcripts. We collected nineteen audio recordings from physics lessons: 
fifteen from lower secondary lessons and four from upper secondary lessons. The 
lessons were transcribed using an Automatic Speech Recognition (ASR) system 
developed by Aalto University (Kronholm et al., 2017, Caballero et al., 2017). The 
content of the selected school textbooks needs to be aligned with the content of 
the classroom lesson transcripts. We therefore collected a total of 31 physics 
school textbooks available in Finnish: Fysiikka (1,2,3,5,6,7,8,9), Kuutio (7), Ilmiö 
(7-9), Physica (1,2,3,4,5,6,7,8,9), Fotoni (1,2,3,4,6,7,9), FYKE, FYKE exercise book 
(1,2), Aine ja energia and Titaani. 

Data analysis 

Figure 1 outlines the three-stage method for obtaining automatic descriptions of 
teacher talk. In the first stage, the collected lesson transcripts and school 
textbooks are pre-processed. In the second stage, an unsupervised topic model is 
trained using the pages from the textbook. This produces a set of topics that 
characterizes the information in the textbooks. In the third stage, the pre-
processed lessons are described using the topic model. Following this, the lesson 
descriptions are visualized in order to answer the research questions. We 
describe each of these stages below. 



Espinoza et al.   FMSERA Journal 2020 3(1) 

7 

 

  

Figure 1. Stages for obtaining automatic descriptions of teacher talk from 
classroom lesson transcripts. 

1. Data pre-processing 

The school textbooks and classroom lesson transcripts are pre-processed 
independently, though following a similar process. The main difference is that 
classroom lessons transcripts are assumed to be already in a digital text format 
(“.txt”). On the other hand, the school textbooks can be collected in several 
formats. Therefore, in order to pre-process them, the text from the textbook pages 
must first be digitalized. This was done using the Python libraries PyPDF2, docx 
and tesserocr, to extract the text from “.pdf”, “.doc” and “.jpg” files, respectively. 
Another difference between the pre-processing of lesson transcripts and textbook 
pages is that we only select the textbook pages where content or exercises are 
presented within a context. Therefore, the introduction and supplementary 
material (e.g. glossary) in each textbook was ignored. Similarly, only textbook 
pages with more than 20 words were considered. Other than this, the method for 
pre-processing the two sources of data is the same. 

Both the textbook pages and the lesson transcripts contain groups of words that 
work as synonyms. To improve the performance of the topic model, words from 
each of these groups must be replaced by labels. Table 1 shows examples of these 
groups, as well as the label used to replace the words in the textbooks and lesson 
transcripts. 
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Table 1. Examples of groups of words that are replaced by a label. 

Label Words 

NUMBER A regular expression of any number 

NAME A list of Finnish first names 

EXPLAINING Eli, kuten, perustuu 

EXAMPLE Esimerkiksi, esimerk 

TIME Aika, aikaa, aikaan, ajasta, ajan 

CALCULATE Laskekaa, laskee, laskemaan, laskea 

SUM Summa, summia 

CONCEPT Käsite, käsitteitä, käsitteinä, käsitteenä,käsitteet 

 

General techniques for pre-processing text are then applied. Any words that are 
not labels are transformed to lower case. Most symbols are removed, with only 
semantically-significant symbols being kept (such as the question mark and 
arithmetic symbols). Stop words are removed (i.e. common words that do not 
add any meaning to the text, e.g. ei, heidän, niinä). A stemming process is applied 
at the end of the pre-processing. This process aims to return the stem of each 
word, transforming similar words (e.g. plurals or verb conjugations) into a single 
term. The Nltk Python library (Bird, Klein & Loper, 2009) was used for the 
removal of stop words, as well as the stemming process. Nltk is a text processing 
library with support for several languages, including Finnish. 

2. Training an unsupervised topic model 

An unsupervised topic model is a machine learning technique capable of finding 
a set of topics in a collection of documents. In this study, we use a Latent Dirichlet 
Allocation model (LDA) (Blei, Ng and Jordan, 2003). LDA is a commonly used 
topic model that characterizes each document as a mixture of topics. The LDA 
topics are lists of words ordered by their degree of belonging to the topic. More 
specifically, LDA topics are defined as probability distributions over the 
vocabulary (i.e. all the terms included in the training data). LDA models work 
with the documents as a bag of words (i.e. the order in which the words appear 
in the document is irrelevant).  

To train the LDA model we used the Gensim Python library (Rehurek & Sojka, 
2010). The LDA model is trained to obtain 60 topics from the pre-processed 
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textbook pages. Usually, topic models are used to describe the same kind of 
documents that are used for training. However, in this case, we trained the LDA 
model using textbook data and then used the model to describe classroom lesson 
transcripts. 

3. Description of teacher talk using the topic model 

Generally-speaking, the LDA model computes a vector for a document, where 
each dimension corresponds to a topic probability. This vector is a probability 
distribution. The sum of all topic probabilities is therefore one. Each topic 
probability represents the likelihood of associating the text in the document with 
the corresponding topic. For our study, we obtain 60-dimensional topic 
probabilities for classroom lesson transcripts using the 60-topic LDA model. 
These vectorial representations of discourse are what we call automatic lesson 
descriptors. It is a powerful, easy-to-interpret numerical description that allows 
for a quantitative comparison between lessons. Furthermore, it provides a tool 
for identifying the most important topics, as well as the proportion in which they 
are combined in a lesson.  

To answer RQ1, we used the method to obtain a summarized description of the 
lessons. We calculated the topic probabilities for the lessons using the 60-topic 
LDA model. As mentioned previously, each LDA topic is a list of words that is 
sorted by the degree to which they belong to the topic. To interpret the topic 
probabilities as lesson descriptors, we check the top words of the topics with the 
highest probability). Depending on the topics that emerge from different lessons, 
we can understand what kind of content analysis can be automated. 

To answer RQ2, we compared the automatic lesson descriptors in order to 
understand which topics were differentiators and how these topics varied 
between lessons. We compared lessons of similar and different content. 
Furthermore, we also calculated the relative distance between the lessons to see 
if the one-on-one differences could induce a coherent grouping of lessons. Since 
the topic representation of lessons is a probability vector, Euclidean distance can 
be used as a metric to cluster lessons by their descriptors. Following this idea, we 
used the Scipy Python library (Jones, Oliphant, Peterson, et al., 2001) to compute 
agglomerative hierarchical clustering (Müllner, 2011). Hierarchical clustering is 
divided into stages, with the number of stages depending on the number of 
elements to be joined. Initially, each lesson belongs to its own cluster. At each 
stage, the closest pair of clusters is linked. To measure the distance between 
clusters we use the 'weighted' method, in which the distance between an old 
cluster and a new cluster formed by the union of sub-clusters, is the arithmetic 
mean of the distance from the old cluster to all the sub-clusters. At the end of the 
clustering process, the lessons are linked in order of similarity. If the topic 
representation is suitable for detecting differences between lessons, then the 
clustering method should reveal a defined structure that relates similar lessons. 

To answer RQ3, we described the development of topics during lessons. We split 
the lessons into time intervals and then tracked the topic probabilities for each 
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interval. We split the lesson transcripts into 10-line intervals. Each line of the 
transcript corresponds to 10 seconds of the original audio recording. Therefore, 
the length of each interval is 100 seconds. The method of topic representation for 
an interval is essentially the same as for the whole lesson. However, visualizing 
60-topic probabilities for all of the intervals in a lesson is not viable. We first 
selected the most important topics as the ones with the highest probability for 
the whole lesson. We then visualized the development of the most important 
topic probabilities throughout the course of the lesson. 

 

RESULTS 

Description of a lesson 

Table 2 shows an example of some of the 60 topics that the model obtained from 
the collection of Finnish physics textbooks. Each column represents a topic. The 
header contains the topic ID and labels that have been manually added in 
parentheses. The rows contain the words with the highest degree of belonging to 
each topic. The English words in capitals refer to the groups of words presented 
in Table 1.  

Some topics are coherent. For instance, Topic 16 (direct current) includes words 
such as current, voltage, resistance, circuit, battery and lamp. On the other hand, 
Topic 37 (question) includes the word “kuva” (picture) which is not a question 
word, unlike the Finnish word “kuink” which is the stem of “kuinka” (how). 
However, “kuva” (picture) may appear in the textbook as part of a sentence such 
as “How heavy is the object in the picture?” and consequently belong to topic 37 
(question). 

Table 2. Example of seven topics and the top 6 words for each. 
Topic  

16 
(direct 

current) 

Topic  
37 

(question) 

Topic  
38 

(atom) 

Topic  
45 

(explain) 

Topic 
50 

(electricity
) 

Topic 59 
(radiation) 

Topic  
60 

(calculate) 

sähkövir ? elektron EXPLAINING ph säteily NUMBER 

jännit kuink ytim FOR 
EXAMPLE 

silmuk aine + 

resistans mite ATOM TIME napo ionisoiv l 

virtapiir kuva proton muun sähkövirt gammasäteily sarj 

paristo a ydin aine vaihtojännit radioaktiivis ratkaisu 

lampu NAME elektro kuite led röntgensäteily yhtälö 
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Figure 2 shows an example of a topic representation for a lesson on electricity, 
obtained using the 60-topic LDA model. There are four topics that stand out from 
the rest: Topic 16 (current), Topic 37 (question), Topic 45 (electricity) and Topic 
50 (calculation). 

 

Figure 2. Automatic teacher talk descriptor for a lesson on electricity. 

Description of two similar lessons 

 

Figure 3. Comparison of topic representations for two lessons on similar 
content. 

Figure 3 shows an example of the topic representations for a pair of lessons on 
electricity. The lessons were taught by the same teacher to the same class on 
different days. The blue dots represent the topic probabilities for the lesson on 
electricity shown in Figure 2. The orange dots represent the topic probabilities 
for the lesson on electricity taught to the same class three days later. The same 
four topics stand out from the rest: Topic 16 (direct current), Topic 37 (question), 
Topic 45 (explain) and Topic 50 (electricity), although there are some differences. 
Topic 37 (question) and Topic 45 (explain) have a higher probability in the second 
lesson. Conversely, Topic 16 (direct current) and Topic 37 (electricity) have a 
higher probability in the first lesson. 

Description of two different lessons 

 

Figure 4. Comparison of topic representations for two lessons on different 
content. 

Figure 4 shows an example of the topic representations for a lesson on electricity 
and a lesson on radioactivity. The blue dots represent the topic probabilities for 
the lesson on electricity shown in Figure 2. The green dots represent the topic 
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probabilities for a lesson on radioactivity, taught by a different teacher to an 
upper secondary class. For the lesson on radioactivity, four topics stand out from 
the rest: Topic 37 (question), Topic 38 (atom), Topic 45 (explaining) and Topic 59 
(radiation). The two lessons both reveal a high probability for Topic 37 (question) 
and Topic 45 (explaining). However, Topic 45 (explaining) has a higher topic 
probability in the lesson on radioactivity and a lower topic probability for Topic 
37 (question). The main difference between the two lessons are the two topics 
related to their respective content. 

Relative distance between lessons 

Figure 5 shows the result of using hierarchical clustering with the topic 
representation of the collected physics lessons. The lessons are labelled according 
to the content of the lesson and an ID to identify them. The blue lines indicate 
distance between clusters of lessons that are above a threshold of 0.1. The lines 
that are not blue represent the four clusters of lessons with an intra-cluster 
distance of less than 0.1. We selected this threshold because it generates the 
largest number of clusters that encapsulate lessons of similar content. The lessons 
‘temperature_1’ and ‘radioactivity_2’ are the only ones that do not belong to a 
cluster. Most of the electricity lessons are grouped together and are closer to each 
other than the lessons from other clusters. 

 

Figure 5. Hierarchical tree of physics lessons by distance between topic 
representations. 

Temporal description of lessons 

Figure 6 shows the temporal development of the topic probability over the course 
of the electricity lesson shown in Figure 1. The lesson is divided into twenty-four 
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intervals. For each interval, the probability of the topics with the highest 
probability is shown. The topics related to content (Topic 16 (direct current) and 
Topic 50 (electricity)) are grouped together. This reduces the amount of 
information in the figure, allowing us to easily identify which intervals in the 
lesson have the highest or lowest proportion of concepts relating to electricity. 
There are three moments during the lesson when the topics with the highest 
probability were not related to electricity: at the beginning of the lesson, during 
intervals 16 and 17, and at the end of the lesson. The importance of the topics is 
distributed evenly between intervals 4 and 15. Following this, there are then two 
intervals in which there is a decrease in the probability of topics relating to 
electricity, with a slight increase in Topic 37 (question). Between intervals 18 and 
21 there is another peak in topics relating to electricity. Topic 37 (question) is the 
most important topic in the two final intervals. 

 

Figure 6. Time development of topic representations throughout the course of a 
lesson on electricity. 

 

 

Figure 7. Time development of topic representations throughout the course of a 
lesson on radioactivity. 

Unlike the lesson on electricity, the two topics related to the content of the lesson 
on radioactivity introduced in Figure 3 are more distinguishable: Topic 38 refers 
to atomic structure, while Topic 59 refers to radiation. Therefore, by computing 
the temporal development of the topics throughout the course of a lesson it is 
possible to visualize how the two topics are integrated in the teacher talk: 
whether these topics appear at the same time or are treated separately. Figure 7 
shows that the first half of the lesson is dominated by Topics 38 and 45. It is only 
in the second half of the lesson that Topic 59 is integrated with the other topics, 
particularly during between intervals 16 and 19. 
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DISCUSSION AND CONCLUSION 

In this study, we presented a method for automatically obtaining a summarized 
description of teacher talk. The method uses an unsupervised learning model to 
compute a set of topics that emerge from school textbooks. The inferred set of 
topics is then used to describe teacher talk from classroom lesson transcripts. The 
main assumption behind the proposed method is that a topic model trained with 
school textbooks provides a useful description of teacher talk. 

We apply the proposed method using a set of Finnish physics textbooks and 
nineteen physics lessons on different topics. We obtained a list of 60 topics by 
training an LDA model. These LDA model topics are groups of words that have 
the highest probability of co-occurring in the textbooks. The topics are 
interpretable and refer to several different content items (e.g. electricity, atom) 
and teaching functions (e.g. explanations, questions, numerical exercises) (Table 
2). Using the LDA model, we obtained a teacher talk descriptor: a vector with 60 
topic probabilities. The teacher talk descriptor allows us to capture the content of 
the lesson and the proportion of general teaching discourse (Figure 2, Figure 3, 
Figure 4). We observe a level of consistency between the teacher talk descriptors: 
two similar lessons are characterized by similar topic probabilities (Figure 2), 
while two lessons on different topics are characterized by distinguishable topic 
probabilities (Figure 3). Moreover, the teacher talk descriptors make it possible 
to group a collection of lessons based on their similarities (Figure 4). 

In addition to providing a description of entire lessons, we also use the teacher 
talk descriptors to show the temporal development of discourse over the course 
of a lesson. As expected, the method captures huge variations in the topics used 
during the lessons (Figure 5, Figure 6). In particular, topics related to content 
have a greater range of variability. In this sense, there are intervals where the 
topic probability is closer to zero and other, larger intervals where they are the 
main topics. Furthermore, the teacher talk descriptors reveal a potential for 
detecting intervals where concepts from different topics are integrated (Figure 
6). More research is needed to validate the accuracy of this temporal description. 
This implies gathering a larger collection of classroom lesson transcripts.  

One limitation of the proposed method is that it does not capture administrative 
teacher talk. As the topic model is trained with textbooks, there is a lack of 
classroom management discourse in the teacher talk descriptors. We therefore 
hypothesize that a more robust set of topics could be obtained if the topic model 
were trained using both textbooks and lesson transcripts. Another limitation is 
that although the teacher talk descriptor is composed of 60 topic probabilities, 
only the most important topics are used to interpret the characteristics of a lesson. 
Therefore, traditional observation methods are more suitable for obtaining a 
more detailed description of teacher talk. For example, one of the lessons on 
electricity was closer to the lessons on electromagnetism than to other lessons on 
electricity (Figure 4). The teacher talk descriptor for that lesson reveals a wider 
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distribution of the topics. It also reveals a lower probability of Topic 16 (direct 
current) than the other lessons on electricity. Although the descriptions provide 
an insight into why this lesson is separated from others, other questions arise: 
Was the lesson an introductory lecture? Did the teacher use a dialogic approach? 
Understanding why this lesson focused less on concepts relating to direct current 
would require a qualitative analysis.  

In this study, the proposed method was applied to Finnish physics lessons. 
However, it can also be applied to lessons taught in different languages and 
based on different subjects. Gathering more lesson transcripts will enable us to 
validate and extend the potentialities of the proposed method. For example, it 
will be possible to train a topic model with data from textbooks and lessons, and 
then test whether this improves the differentiation of lessons by content, teacher 
or grade. Our ultimate goal is to be able to relate talk patterns in learning 
environments with student learning gains. We aim to use the method presented 
in this study to measure how deeply a topic is discussed, at what stage during 
the lesson, and with which other topics it is related. In the future, we hope to 
relate the temporal integration of topics with student learning gains.  
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