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Abstract

In stochastic population forecasts, the predictive distribution of the TFR is of central

concern. Common time series models can be used to predict the TFR and its

moments on the short run (up to 10 or 20 years), but on the long run (40–50 years)

they result in excessively wide prediction intervals. The aim of this study is to

analyse and apply a time series model for the TFR, which restricts the predicted

values to a certain pre-specified interval.

I will model the time series of log TFR-values as a Brownian motion with absorbing

upper barrier. I will give and analyse

• expressions for the predictive distribution of the log of the TFR assuming it

follows a Brownian motion with absorbing ceiling;

• expressions for the first and second moments of the predictive distribution of

the log of the TFR.

When the log of the TFR follows a random walk with absorbing ceiling, I find that

the second moment of the predictive distribution for the long-run TFR in Norway

is insensitive for ceiling levels beyond a threshold of approximately 3.4 children

per woman. This conclusion holds for a fairly broad range of innovation variances.

If the log of the TFR follows a random walk, sample paths that exceed approximately

3.4 children per woman may be rejected when simulating future fertility in Western

countries. This will not have any major effect on the width of the long-term

predictive distribution.

1 Revised version of a paper presented at the XXIV IUSSP General Population Conference, 18–24
August, Salvador, Brazil, Session S51.
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1. Introduction

In the last decade, a number of stochastic forecast models have been developed
(Lee and Tuljapurkar 1994; Lutz and Scherbov 1998; Alho 1998; De Beer and
Alders 1999; Keilman et al. 2001). The basic idea of a stochastic forecast, as
opposed to the traditional deterministic forecast, is to think of the population in the
future not as one number, but as a whole distribution: some numbers are more likely
than others. If forecast results are presented in the form of predictive distributions
of this kind, the user is forced to take forecast uncertainty into account. At the same
time, forecasts of this nature are less vulnerable to sudden changes in fertility and
mortality trends than traditional deterministic forecasts.

Stochastic population forecasting is based on the Cohort Component Method. But
instead of one set of parameters for fertility, mortality, and migration, as in the
traditional deterministic method (or perhaps three, when a high, a medium, and a
low forecast variant are computed), one specifies the joint statistical distribution of
all input parameters. Because of the large amount of input parameters (35 fertility
rates, 200 death rates, and 120 parameters for net migration for each forecast year),
simplifying assumptions are used. First, one assumes that fertility, mortality, and
migration are independent. For industrial countries this is a reasonable assumption.
Second, one focuses on the distribution of a few summary indicators (for instance
total fertility rate, life expectancy at birth, level of net-immigration), thereby
ignoring the statistical distributions of the detailed parameters (age-specific rates).

There are three main methods for specifying the statistical distributions of the key
parameters: time-series extrapolation; expert judgement; and extrapolation of
historical forecast errors (Keilman 2001). Time-series methods seldom give an
accurate description of the past. If many of the historical facts remain unexplained,
time-series methods result in excessively wide prediction intervals when used
for long-term forecasting (Saboia 1977; Lee 1993; Keilman and Pham 2000).
Judgemental methods can be used to correct or constrain such broad prediction
intervals. Expert judgement is also used when expected values and corresponding
prediction intervals are hard to obtain by formal methods (Lutz et al. 1998). The
expert-judgement method implies that a group of experts is asked to indicate the
probability that a key parameter (such as the average number of children per woman,
or life expectancy) in some future year falls within a certain pre-specified range. A
weakness of this approach is that experts, often being unduly confident, tend to
attach an overoptimistically high probability to an interval of a certain width.
Finally, empirical errors observed for past forecasts may be extrapolated to predict
the expected errors for the current forecast.

This study presents a time series model, in which expert judgement is used to restrict
the prediction intervals. The contribution I hope to make is to provide a sharper
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distinction between two of the three methods currently in use for stochastic
population forecasts. Illustrated by the case of the Total Fertility Rate (TFR), it
shows mathematically how the choice for a certain upper bound to the future TFR
influences its predictive distribution. For high enough values of the upper bound,
the distribution is close to an unconstrained one. The lower the bound, the stronger
its impact on the predictive distribution. The aim of this study is to analyse this
sensitivity, and to find a critical value for the upper bound of the process in question,
that is, a value above which the impact of the bound on the distribution in practice
can be neglected.

Keilman and Pham (2000) present TFR-predictions for Norway for the years 1996–
2050. These are based on an ARIMA (1,1,0) model for the logarithm of the annual
TFR, estimated on the basis of data for the years 1945–1995. The long-term
predictions for the mean and median values of the TFR appear reasonable: 2.2 and
1.9 children per woman, respectively. However, and not surprisingly, the prediction
intervals are excessively wide in the long run. For example, in 2050 the 95 per cent
prediction interval for the TFR ranges from 0.6 to 6.1 children per woman. Around
the year 2020, the upper 95 per cent bound exceeds the level of four children per
woman, clearly an unrealistic value for Norway, even if the probability is only 2.5
per cent. Thus, the model produces informative prediction intervals up to 20–30
years ahead, but in the long run the predictions are unrealistic and the prediction
intervals are too wide.

The reason why the ARIMA model for the long term produces wide prediction
intervals for the period TFR is that it contains no extraneous information beyond
past data. Several factors are associated with the development of fertility after World
War II in Norway, similar to other countries. Important elements in this respect are
the introduction of modern contraception, the adoption of new norms and values
with respect to childbearing and partnership, increased interest in tertiary education,
and growing levels of labour force participation among women (Kravdal 1994;
Lesthaeghe and Surkyn 1988). None of these factors is, or could be, explicitly
modelled. It is reasonable to expect that they will be in operation in the future, too.
Yet we have no idea to what extent these or other factors will constrain Norwegian
fertility in the next century, be it period or cohort developments.

One has to take recourse to other methods when predictions so far ahead are
required. The easiest one is to assume that in 2020, say, uncertainty is already so
high that it will not increase any more (e.g. Alho and Spencer 1997). In that case
prediction intervals are constant after 2020. An alternative method is to assume
that there is an upper bound to fertility levels in Norway. This can be done in several
ways: by means of an appropriate logit transformation of the TFR, by means of
simulation in which extreme values are rejected, or by assuming that the TFR can
be modelled as a time series which includes an upper bound. In Sections 2 and 3, I
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will discuss earlier studies based on logit transformation and simulation. In Section
4, I will assume that the TFR can be modelled as a Brownian motion, which is
absorbed at a certain ceiling. Section 5 contains an application of that model using
Norwegian TFR data.

2. Logit transformation

Lee (1993) has used a logit transformation in order to restrict predicted TFR-values.
He first transformed the annual TFR for the United States into

g
t
= ln{(TFR

t
– L)/(U – TFR

t
)}

where L and U are pre-specified lower and upper limits for the TFR. Next, he
identified and estimated an ARMA-model for the transformed variable g

t
. This logit

transformation will produce a forecast for the TFR that will never exceed U or fall
below L. However, as noted by Alho and Spencer (1997), such a model may have
undesirable consequences. They demonstrated that when g

t
follows a random walk

process, then TFR
t
will eventually be “absorbed” close to U or L for large enough

t. This anomaly also showed up empirically in the case of Norway. In an earlier
study (Keilman and Pham 2000), we selected L=1.0 and U=3.1, and identified an
ARIMA (2,1,0)-process for the logit-transformed Norwegian TFR. (The maximum
TFR-value in the period 1945–1995 was 3.02, in 1964. Hence, an upper bound of
3.0 would cause the transformation to break down in that year.) In 2050, the bounds
of the 67 per cent prediction interval (1.12, 2.86) were very close to those of the 95
per cent interval (1.01, 3.08). In the long run, the boundaries of any interval
approach the upper and lower bounds U and L arbitrarily closely. The conclusion is
that a logit transformation cannot be used for constraining prediction intervals that
result from a non-stationary model.

3. Rejecting extreme values

In Keilman and Hetland (1999) we simulated prediction intervals for the TFR in
Norway by means of the ARIMA (1,1,0) model mentioned in Section 1, thereby
rejecting all sample paths that exceeded certain extreme values. We experimented
with upper bounds ranging from 2 to 5, and inspected the resulting prediction
intervals. We found that setting reasonable limits to the predicted TFR has little
impact on the bounds of the 67 percent prediction intervals in the short run. In the
year 2020, this interval is 0.80 children per woman-wide when the TFR is limited
to 3 children, and 0.92 and 0.95 children-wide for maximum TFR values of 4 and
5, respectively. In the long run however, uncertainty (as expressed by the width of
the 67 percent prediction interval) grows faster. In 2050, the interval widens from
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1.31 children per woman for a maximum TFR of 3, to 1.64 and 1.88 children per
woman for maximum TFRs of 4 and 5, respectively. The 95 percent interval bounds
are rather strongly influenced by the choice of a certain maximum TFR-value, also
in the short run. In 2010, the width amounts to 1.60, 1.92, and 2.06 children per
woman for maximum TFR-values of 3, 4, and 5. A maximum TFR equal to 3 would
imply a median and a mean TFR that decrease over time, which was judged
unreasonable. Therefore the general conclusion was that a maximum TFR equal to
4 children per woman appeared to be a reasonable choice. (Experiments with a
lower bound to the TFR suggested that minimum values up to 0.5 children per
woman hardly influenced the TFR prediction intervals.)

4. Brownian motion

Choosing upper and lower bounds for the TFR, as discussed in the previous sections,
is largely an arbitrary matter. At the same time, the choice may have important
consequences for the shape of the predictive distribution and the width of the
prediction interval, as was argued in Sections 1 and 3. In the current section I shall
discuss a method based on the theory of Brownian motion, which makes it possible
to analyse how sensitive the prediction interval is for a certain choice of the upper
bound. A Brownian motion (also called Wiener process) is a normal process with
stationary independent increments (e.g. Lamperti 1966; Feller 1968). Assuming that
the process starts at time t=0, the predictive distribution is that of a normal variable
with a standard deviation proportional to √t. While time is a continuous variable in
a Brownian motion model, its discrete-time counterpart is the Random Walk. When
an absorbing upper bound is introduced to the Brownian motion, the predictive
distribution of the resulting process is no longer normal.

Assume that a random variable Z=Z
t

follows a Brownian motion, but that it is
absorbed as soon as it reaches a ceiling a. The transition density of the process at
time t is (Borodin and Salminen 1996, 107)

(1)

where z
0

is the starting position at time t=0 of the random variable, and σ2 is the
variance of the innovation process. When a approaches infinity, the second
exponential vanishes, and the density approaches that of a normal variable with
expectation z

0
and variance σ2t, as expected. I shall derive expressions for the

expected value and the variance of Z
t
as a function of the ceiling a, given that the

process has not been absorbed. To the best of my knowledge, these expressions
have not been given before.
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At time t there are two possibilities: the process moves freely on the line -∞<z
t
<a,

or it is absorbed at the ceiling a. The probability that we encounter the first situation

is Using expression (1) it can be shown that this non-absorption

probability equals

(2)

where Φ(u)=Pr[U≤u] denotes the cumulative distribution of a standard normally
distributed variable U. The probability that the process is absorbed at a is the
complement of this expression, viz.  2{1-Φ(.)}, and the transition density for the
event that the process is in z

t
, given that it has not been absorbed, is

g(z
t
)=f(z

t
)/[2Φ(.)-1]. The expected value and variance of the probability

density function g can be computed using its moment generating function

M(s) =

Writing u for (a-z
0
)/σ√t, one may readily verify that the expected value of g(z

t
) is

(3)

For large a, the probability of non-absorption (2Φ(u)-1) approaches 1, so that the
expected value approaches z

0
. For finite a, 2Φ(u)-1<1, and the expected value is

lower than z
0
. Φ(u) falls when t increases, so that the expected value becomes

progressively lower than z
0
. All these findings are as one would expect.

After some tedious but straightforward algebra one finds for the second moment of
g(z

t
)

For large a, Φ(u) approaches one, while at the same time the exponential vanishes.
In that case the second moment is close to z 2

0 + σ 2t, and the variance approaches
z 2

0 + σ 2t – z 2
0 = σ 2t, which is the variance of an unbounded Brownian motion.

so that its variance equals (4)
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How do the expected value in expression (3) and the variance in expression (4)
change when the ceiling a changes? For fixed z

0
, t, and σ2, the expected value

increases monotonically with growing a. It is lower than the starting value z
0
, but

approaches that value asymptotically, when a is increased. For a approaching z
0

(from above), the expected value approaches (by L’Hôpital) z
0
-σ√(πt/2).

The variance in expression (4) is the sum of three terms, T
1
, T

2
, and T

3
, say.

T
1
= z 2

0 + σ2t represents the variance of a Brownian motion – it is independent of
the ceiling a. T

2
is written in curled brackets, and T

3
is the term which contains the

exponential function. Figure 1 illustrates how T
2
, T

3
, and the variance depend on a,

for the standard case z
0
=0, t=1, and σ2=1.

Figure 1. Variance of a Brownian motion with ceiling a, and its components.

The figure shows that the variance is S-shaped. For small a, it starts a little under
0.5, and it approaches σ2t=1 asymptotically when a grows. The reason is that, for
large enough a, the term T

2
approaches (–z 2

0) = 0, while T
3

dies out.

Figure 1 holds for t=1 only. When time increases, the S-curve is shifted upwards,
and at the same time it is stretched to the right. For very small yet positive a, the
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variance is close to t(2-π/2), and for large a it approaches t (still assuming z
0
=0 and

σ2=1), which confirms the earlier finding. Empirically I found that for a given
ceiling a, at time t ≈ a, the variance is close to its asymptotic level t.

Figure 2 shows how the form of the probability density function g(z
t
) depends on

the ceiling a, again for the standard case z
0
=0, t=1, and σ2=1. Note that the curves

for a equal to 3 or 4 are almost indistinguishable, while the curve for a=2 is very
similar to that for a=3. This confirms what was found for the variance in Figure 1:
the variance changes little when a is increased from 2 to 3, and for a larger than a
“threshold-level” of around 3, it remains virtually the same. In empirical
applications, the threshold level for the ceiling, i.e. the level beyond which the
probability density hardly changes, will depend on the starting point z

0
, and in

particular on the innovation variance σ2 (and on time t).

Figure 2. Probability density function g(z
t
) for a Brownian motion with absorbing

ceiling a between 1 and 4.

5. Application

In this section I shall work in discrete time, and hence use the term “random walk”
instead of “Brownian motion”. In order to illustrate the expressions of Section 4, I
have assumed that the log of the TFR for Norway in the period 1900–2000 follows
a random walk. This is obviously not a good model: elsewhere it was found that
log-values of the TFR follow an ARIMA (1,1,0) model (Keilman and Pham 2000).
But this assumption was used in order to get an impression of the order of magnitude
of the innovation variance.
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Estimates of the innovation variance σ2 varied a great deal, depending upon the
estimation period. I estimated a value for σ2 equal to 0.0017 for the entire period
1900–2000, and values of 0.00084, 0.00083, 0.00102, and 0.00041 for the periods
1950–2000, 1960–2000, 1970–2000, and 1980–2000, respectively.

For large values of a, the process Z
t
is an unconstrained random walk, and the TFR-

process Y
t
=exp(Zt) is the exponential of a random walk. In that case, predictions

for Z
t

are normally distributed, and Y
t

has a lognormal distribution with known
expectation and variance. When the ceiling becomes effective, the distribution of
Z

t
is no longer normal.

I have analysed the expected value and the standard deviation of Y
t
as a function of

the ceiling b=exp(a) for the medium-term (2030) and the long-term (2050) situation.
Since Y

t
=exp(Z

t
), it has expectation E(Y

t
)=exp[E(Z

t
)+1/

2
Var(Z

t
)] and variance

Var(Y
t
)={exp[Var(Z

t
)]-1}.exp[2E(Z

t
)+ Var(Z

t
)]. The process starts in the year 2000,

with Y
0
=1.851, which is the TFR-value observed in that year. The innovation

variance σ2 was chosen equal to 0.0008. Figure 3 shows how the expected value
and the standard deviation of Y change when the ceiling b goes up.

Figure 3. Expected value and standard deviation of Y
t
as a function of the ceiling b.
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Both variables increase towards their maximum values, as the ceiling moves
upwards. We see that ceiling values b higher than approximately 2.5 children per
woman have little impact on the expected value. This insensitivity is explained by
the fact that at b=2.5, the absorption probability 2(1-Φ(u)) is very low in 2030 (5
per cent), and still moderate (13 percent) in 2050. The higher this probability, the
stronger the ceiling influences the pdf of the random walk process Z

t
. For the

standard deviation of Y
t
, the threshold is approximately 3 children per woman, a

level at which the absorption probabilities are no more than 0.2 and 1.6 percent in
2030 and 2050.

Note that when the ceiling is below 3 children per woman, the expected value in
2050 is lower than in 2030. E(Y

t
)=exp[E(Z

t
)+1/

2
Var(Z

t
)] depends on the variance of

Z
t
, which increases with time. However, for low ceiling values, the expected value

of Z
t
falls as a function of time, because the process is more and more likely to be

absorbed. The net result is that also E(Y
t
) falls with time. The higher the innovation

variance, the larger the absorption probability is, and the steeper the fall in E(Y
t
)

over time. Take as an example in Figure 3, with σ2 equal to 0.0008, the case of
b=2.4 children per woman. The TFR in 2050 (1.761) is 0.057 children lower than
that in 2030 (1.818). But when σ2 equals 0.0004, the difference between the 2050
TFR (1.832) and the 2030 TFR (1.852) is only 0.02 children.

In Figure 3, the expected value and the standard deviation of Y
t
change very little

for ceiling values beyond a threshold of 3 children per woman. The threshold
depends strongly on the innovation variance σ2. This can be analysed more formally
as follows. E(Y

t
) varies with b, but for large enough b it is independent of the ceiling

(in practice for b>6). The latter value of E(Y
t
) may be called the unconstrained value.

It corresponds with the pure random walk value of the original Z-process. For a
certain level of b, E(Y

t
) is at 95 percent of its unconstrained value. Denote this as

the threshold level b*. In Figure 3, for instance, the unconstrained value of E(Y
t
) in

2050 is 1.89. This leads to a threshold level b* of 2.5. Similarly, for the standard
deviation of Y

t
, Figure 3 shows a threshold level of 3.0 in 2050.

Table 1. Threshold levels b* for expected value and standard deviation of Y
t
in 2050,

for various levels of innovation variance.

Expected value of Y
t

Standard deviation of Y
t

Innovation Representing the b* E(Y
t
;b*) b* sd(Y

t
;b*)

variance σ2 period

0.0004 1980–2000 2.2 1.78 2.6 0.25

0.0008 1950/1960–2000 2.5 1.79 3.0 0.36

0.0012 1970–2000 2.8 1.81 3.4 0.45

0.0016 1900–2000 3.0 1.83 3.7 0.53
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Table 1 shows that the threshold level for the year 2050 increases by between 0.2
and 0.4 children per woman, when the innovation variance of the underlying random
walk is increased by 0.0004. The threshold for the standard deviation is higher than
that for the expected value, and it increases a bit faster. Threshold levels in 2030
were found to be lower than those for 2050 (figures not shown here).

Hence one may conclude as follows. When innovation variance values in the range
0.0004–0.0012 are thought to be representative of the TFR-development in Norway
after World War II (erroneously assuming that a random walk is an appropriate
model for the log of the TFR), choosing a ceiling equal to 3.4 children per woman
will not have any major impact on the standard deviation or the expected value of
the predicted TFR up to the year 2050.

6. Conclusion

In this paper I have demonstrated that when the log of the TFR follows a random
walk, choosing a ceiling equal to 3.4 children per woman will not affect the expected
value and the standard deviation of the predicted TFR up to the middle of this
century. This conclusion holds for a fairly broad range of innovation variances,
including rather extreme variance values. A reasonable choice for that variance leads
to a sharper estimate for the ceiling’s threshold value, namely 3 children per woman.

This conclusion has important consequences for stochastic population forecasting.
It implies that formal methods can be used when defining the bounds of prediction
intervals for one of the forecast’s most important input variables, e.g. the TFR
(provided of course that the TFR can be modelled as a random walk, or that it is
close to a random walk). The upper bound can be set lower than three children per
woman. But that implies that the resulting prediction interval is influenced, and
such a subjective decision has to be justified carefully. Thus the current paper
contributes to sharpening the distinction between subjectively defined prediction
intervals for the TFR predominantly based on expert opinion, and intervals that are
primarily based on time series analysis (Keilman 2001).

The random walk/Brownian motion model analysed in this paper might fruitfully
be applied to stochastic forecasts for other demographic processes than fertility.
For instance, annual outmigration flows (in logarithmic form) from Norway in the
period 1958–1997 are described well by a random walk (Keilman et al. 2001). But
the estimated innovation variance was so large that predictions further ahead than
approximately five years resulted in too-wide intervals. Thus it was decided to keep
the intervals constant after an arbitrarily chosen period of five years.



218

A methodological extension would be to introduce, simultaneously, an upper and a
lower bound. In the current application, the lower bound was set to zero, by the
logarithmic transformation of the TFR. Earlier experiments with Norwegian data
indicated that a minimum TFR up to 0.5 children per woman had very little impact
on the resulting prediction intervals. Therefore the current analysis focused on an
upper bound. But in other applications, for instance for migration flows, or life
expectancy, lower bounds will be as relevant as upper bounds. In these cases one
could model Z

t
=log(Y

t
-α), with α the intended lower bound, and investigate the

sensitivity of the expected value and the variance for different choices of α. Another
extension would be to analyse more complicated bounded processes, based for
instance on an integrated random walk, or an autoregressive process.
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