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After a few years of development and testing in various fields, Exploratory Data Anal
ysis (Tukey, 1977) can now be considered a totally fresh and powerful branch of statis
tics as weil as a minor revolution in statistical thinking. Traditional »mainstream» sta
tistics are mostly concerned with Probability Theory, ie. trying to confirm probabili
ties of events, and on the other hand, use »heavy» multivariate methods, the mathematics 
of which are beyond the scope of non-experts. In contrast, EDA is totally aimed at 
exploration. The idea is simply to obtain and graphically display all the information 
a group of data (a »batch» in EDA jargon) can produce of itself. EDA is also relatively 
easy to use even by hand-calculation. 

Another important advantage of EDA is its independence of the Normal Law in 
theory as weil as in practice. In other words, it is of little relevance for the analysis, 
whether the data is distributed »normally» or in any other way; whether the data is a 
proper sample in the statistical sense or not etc. This makes it an extremely suitable 
tool particularly in archaeology, in the material record of which a Gaussian distribution 
is, at least in my experience, a rarity, and where groups of data are not generally proper 
statistical samples of anything. However, EDA is still rather unknown in Europe and, 
to my knowledge, has not so far been applied to archeological problems anywhere. 

Other general features of EDA are its ability to identify stray-values, here called out
liers, and its overall in-built resistance to them, the latter due to the fact that EDA 
operates with median-based concepts and routines . In traditional confirmative sta
tistics, even such every-day methods as the arithmetic mean and standard deviation are 
easily thrown off course by one or two extraordinarily high or low values (in contrast 
to the mean, the median is always the mid-value or the average of two mid-values, 
however much the extreme values differ from the rest of the batch). This resistance 
allows outliers to be included in the analysis, while in mainstream statistics they are 
generally omitted (eg. B0lviken et a/., 1982), which naturally reduces the available 
information. 

Although EDA routines can be carried out by hand, access to a proper computer is 
obviously of great help. The most important routines of EDA were computerized 
recently (Velleman and Hoaglin, 1981), and are included in the MINITAB (TM) statis
tical package (Ryan et al. 1982). Most of the following analysis was carried out using 
this package. 

All in all, in my opinion EDA methods are highly recommended as the initial steps 
of numerical analysis in any field . Exploration comes first, confirmation after there is 
something to confirm (Tukey 1977, vi-vii). In problems of archaeology and the 
humanities in general, EDA is usually quite sufficient in itself, in some extreme cases 
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Table 1. The six analyzed hoards, the number of coins a nd that of dated coin s in them as weil as the terminus 
post quem values of each hoa rd. 

Hoards coins n dated coins n l.p.q. 

Geta Svedjelandet 107 105 842 
Jomala Hammarudda 157 149 857 
Saltvik Bertby 859 741 890 
Östergeta Västergärd 28 25 954 
Saltvik Äsgärda 81 75 958 
Finström Emkarby 84 77 958 

Total 1316 1172 

perhaps eombined with advaneed analysis of varianee and/ or some multivariate 
method. Interpretation of the results, as with any method, is of eourse left to the 
arehaeologist's eommon sense and general knowledge of the subjeet. 

The Viking Period Oriental eoin finds from Aland were ehosen as example material. 
Of the total of 1346 eoins published by Granberg (1966), single finds, grave finds and 
hoards with less than 10 eoins were omitted (all of these are, however, weil inside the 
range of the analyzed material). This leaves six largish hoards with altogether 1316 
eoins, of whieh 1172 are dated (Table 1; also eoins dated to the aeeuraey of a deeade 
or the reign of the ruler who had them minted are aeeepted). One is a Byzantine and 
all the others Islamie or pre-Islamie silver eoins. In the analysis eaeh eoin is assumed 
to date to its (earliest possible) minting year and eaeh hoard to that of its youngest eoin. 
This is a eonstruetion quite eommonly used in numismatieal studies (eg. Blaekburn and 
Metealf, 1981, passim), and the only sensible basis for a statistieal analysis of eoin 
deposits (see also Sarvas, 1972, 10-12). 

Before the analysis, a few simple eoneepts, some of them familiar, others probably 
not, have tobe defined (Tukey, 1977, eh. 2): 

extremes 
median 

hinges 

range 
H-spread 
inner f ences 

outer fences 

adjacent values 
out values 
far-out values 

= the maximum and minimum values of a bateh, 
= the mid-value or the average of two mid-values of the ordered 

data, 
essentially quartiles (see Tukey 1977, 32-33), ie. the mid-values 
between median and the extremes, 
upper extreme - lower extreme, 
upper hinge - lower hinge, 
(lower hinge) - 1.5 x (H-spread) and 
(upper hinge) + 1.5 x (H-spread), 
(lower hinge) - 3 x (H-spread) and 
(upper hinge) + 3 x (H-spread), 
those closest to the inner fenees but still inside them, 
those outside the inner fenees but still inside the outer ones, 
those outside the outer fenees. 

The first step in EDA is usually a stem-and-leaf display (Tukey 1977, eh. 1; Velleman 
and Hoaglin 1981, eh . 1) of the data (Fig. 1). lt eombines the essential features of 
standard tables and histograms, as weil as identifies potential outliers . The latter (espe
eially those far-out) should first be eheeked in any analysis against the possibility that 
they might be sampling, input or ealculating errors. In ease they are none of these, they 
must be eonsidered indieating signifieant deviations from the overall behaviour of the 
bateh. The display is generally trimmed at the inner fenees, and low outliers, if any, 
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STEM-AND-LFAF DISPLAY OF 'TOI'AL' 
LFAF DIGIT UNIT = 1.0000 
1 2 REPRESENI'S 12 . 

LO 

17 67 
20 68 
21 69 
26 70 
33 71 
37 72 
45 73 
56 74 
81 75 

150 76 
238 77 
290 78 
352 79 
480 80 

(114) 81 
578 82 
558 83 
537 84 
514 85 
444 86 
211 87 
177 88 
177 89 
159 90 
140 91 
105 92 
88 93 
53 94 
28 95 

559, 582, 585, 588, 596, 600,600, 600, 617, 620, 620, 620, 624, 
624 ,, 672 , 675, 

9 
099 
1 
28899 
0001235 
5559 
11677799 
11122357899 
0111145666677777777777788 
001122333334444444456777888888888888888888888888888888888888888888* 
000000011111222222222233333333333444455555556666666777777777777788* 
0000000011111111222222333333444466667777777888889999 
00111112255555555566666666666666667777777777888888888889999999 
0000001111222222222222222233333333333333333333334444444444441144444* 
000000011111222222233333344444444444445566666666666666666666666666* 
01111222333344444559 
000123345555577777789 
12223666777777888888889 
001112222233333344444444444455566666677777777777777777777789999999• 
000000001112222222222222222222222222223333333334444444444444444444* 
0000001111122222333333333444444444 

000355555566677889 
0011124555567778999 
00000011112222223333333344455666789 
00012223666777899 
12222333333334444444445556666888999 
0000012223355555556668899 
0000111111222222444444445588 

Fig. 1. A stem-and-leaf display of the coins (see text). The heading specifies the unit (1 year) with an example, 
» l 2 represents 12» (and not .12, 1.2 etc.). The »*»'s in the rightmost spaces of some lines signify overflow 
from the computer screen (the depths still provide a complete count). 

are listed after the heading »LO» above the display and potential high outliers (none 
here) below it marked »HI». 

As to the actual display, the second column from the left contains the »stem» part 
of the data items, while the rows to the right of it contain their »leaf» digits. Thus, 
the first line consists of the number (minting year AD of a coin) 679, the second reads 
680, 689, 689, the third 691 etc. The column to the far left informs how many items 
there are on each line, cumulatively counted from both edges of the ordered data 
towards the median, while the line containing the latter is shown with the actual count 
of leaves on it within parenthesis. In other words, the display preserves the numerical 
information while presenting it as horizontal histograms. lt is easy to see (Velleman and 
Hoaglin 1981, 1): 
a) how wide the range is, 
b) where the values are concentrated, 
c) how nearly symmetric the batch is, 
d) whether there are gaps with no items in them and 
e) whether there are values straying markedly from the rest. 
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BOXPLOT 'TOTAL' 

0 ••••• •-----------! + !---------

-----+---------+---------+---------+-----
ONE HORIZONTAL SPACE = 10E+02 
FIRST TICK AT 600.a00 

Fig. 2. A boxplot of the coins. The code » + » marks the median, the »I» 's mark the hinges , the »whiskers» 
run from the hinges to the adjacent values, while »*»'s signify the out values and »O»'s the far-out ones. 

However, in order to easily obtain a general idea of the batch with a quick look, it 
should be displayed in a strongly summarized form. The method to do this is the box
plot {Tukey 1977, 39-48; McGill et al. 1978; Velleman and Hoaglin 1981, eh. 3), 
which by omitting as many details as possible, clearly shows the general behaviour of 
the batch (Fig. 2). Even a summarized diagram like this can transmit a surprising 
amount of information; practically half of the values are located inside the box, a 
quarter of these to the left of the median and vice versa, while half of the remaining 
ones lie to the left of the lower hinge and the other half to the right of the upper hinge. 
Moreover, boxplots are effective in visually displaying potential outliers. One defect 
of the method is the fact that boxplots cannot clearly detect possible bi- or multimodal 
tendencies in a batch, but this is no problem, as other routines, starting with the stem
and-leaf display, are able to do that. 

In order to compare the six hoards with each other they are next displayed as simul
taneous boxplots on the same axis in Fig. 3. The most striking feature is that they are 
clearly clustered into two separate groups with minimal overlap. Although eg. the 
hoard from Saltvik Bertby may weil have been deposited not until the early 10th cen
tury, we may speak of three 9th century hoards and three 10th century ones for son
venience. Another obvious fact is that the ranges of the 9th century hoards are much 
wider than those of the 10th century ones, partly because of the low outliers. 

One step further in one-variable analysis is the letter-value display (Fig. 4; Tukey 
1977, 53-54; Velleman and Hoaglin 1981, eh. 2; Ryan et al. 1982, 128-129). The »let
ter values» are the midpoints between the previous letter value(s) (starting with the 
median) and the edges of the ordered data, and are defined by their »depth» (from the 
nearer edge of the ordered data). The median (M) can thus be found at depth 
(M) = (n + 1)/2, the hinges (H) at depth d(H) = int(d(M) + 1)/ 2, the »eights» (E) at int 
d((H) + 1)/2 etc., »int» naturally standing for the integer part function. Remaining Let
ter values are found by continuing the routine and have no proper names, but are marked 
with the letters D, C, B, A, Z, Y, X etc. As an extended summary, the letter value dis
play shows any inconsistencies and leanings towards high or low values (most clearly 
with tendencies in the »mids» and »spreads») in more detail than a boxplot. 

The final method for one-variable data is the rootogram (Tukey 1977, 543-661; 
Velleman and Hoaglin 1981, eh. 9; Ryan et al. 1982, 136-137) . The Gaussian distribu
tion is one of the best known statistical features in existence, and the techniques mea
sure deviations of the data from the Gaussian »normal». The routine first divides the 
data into bins (intervals) and displays it with a Gaussian distribution fitted to it. The 
fitting is based on double root residuals (Valleman and Hoaglin 1981, 265-267): 
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Fig. 3. The six hoards displayed as simultaneous boxplots on the same axis. The hoards from top to bottom 
are: Geta Svedjelandet, Jomala Hammarudda, Saltvik Bertby, Östergeta Västergärd, Saltvik Äsgärda , Fin
ström Emkarby. 
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3 7.5 
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T". O. 000 
689 . (l(l(I 
620 .000 
598 . 000 
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787, (l(l(l 334.000 
776.(100 356. 00(1 
770. (1(1(1 370.000 
7 7 (!. (10(1 376.000 
758. 5(l(l 399. 00(:l 

Fig. 4. A letter-value-display of the data. The leftmost column shows the depth of the letter values from the 
nearer edge of the ordered data, the second column the values of the lower and the third those of the upper 
letter values of the same depth. The »mids» 'are the average of the two, while the »spreads» are upper minus 
lower letter value of the same depth. 

DRR ·J2 + 4(observed) - ✓ 1 + 4(fitted) if observed =i=- 0 

l - ✓ l + 4(fitted) if observed = 0, 

this in order to stabilize variance. The fit is found using the median and hinges of the 
batch in order to resist extraordinary values or bin counts (for details see Velleman and 

349 



ROOT□GRAM ' T □ rAL . ' 
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IN DISPLAY, VALLJE OF □NE CHARA CTER IS . 2 00 

Fig. 5. The (suspended) rootogram of the total distribution of coins. The display shows the number of bins 
(intervals), the bin counts, »raw residuals» (original observed values minus fitted values) and double root 
residuals (see text) of the data . The graphic display is a plot of the latter and the plotting character is the 
sign of them (- or + ). The vertical zero-line (ie . »the perfect Gaussian fit ») passes the display between the 
double »O»'s. Two vertical dotted lines are plotted at -2 and + 2, giving approx . 95 % confidence limits 
to the DRRs of the data. The »*»'s indicate DRRs beyond -3 and + 3. 

Hoaglin 1981, 267-274). The graphic display, called the suspended rootogram, is a 
plot of the DRRs (Fig. 5). 

So far we have been concerned with one-variable analysis . Other methods are 
needed for bivariate (x-y) analysis. The basis of these methods in EDA is the standard 
scatter plot. A plot of »raw» values can of course submit information, but it is possible 
to go much further with a few techniques special to EDA. The first of them is transfor
mation (re-expression) of the raw data values (Tukey 1977, chs. 3 and 6; Velleman and 
Hoaglin 1981, sections 2.4 and 5.8). The most common options (in increasing order) 
are .. . - l/y3, -l/y2, - 1/y, -1/✓y, log(y), ✓y, [y 1 (no transformation)], y2, y 3 ••• 

Going lower or higher is necessary only extremely seldom. The aim of re-expressing 
either x or y values or, generally preferably both, to the same power, is to straighten 
out the plot, ie. to make the x-y relationship linear in case it is curved (as it usually 
is) . Here only the re-expression of y values is needed as we are dealing with a sequence, 
in other words, the x values are evenly distributed (decades), in which case transforma
tion causes no apparent change . 

The method to establish which re-expression is the most effective in a particular case, 
is to fit two lines to the data, one to the left and the other to the right half of the scatter 
(if done manually, it is possible to use only three representative data points) (Tukey 
1977, 171-203; Velleman and Hoaglin 1981 , 135-142). When, after repeated trans
formations (in the latter case, only the three points need to be re-expressed), the slopes 
of the two lines are as close to each other as possible, the best re-expression is found. 
However, here a linear model is not too weil suited to the rather complex pattern of 
all of the six hoards. So, in order to show an example functioning really weil, only the 
three 9th century hoards are analyzed at this stage. Logs (base 10 logarithms) were 
found to be the perfect re-expression for them. 
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Fig. 6. The (logarithmic) residuals plot of the 9th-century hoards vs. decade (see text). 

The fitted values obtained in this way ean of eourse be plotted, but in faet they are 
rather uninteresting. The main point in finding the linear fit is to display the residuals 
(Tukey 1977, 113-114, 143-159): 

data = fit plus residuals, and eonsequently 
residuals = data minus fit. 

Plotting the residuals, ie. the differenees between the raw data points and the eor
responding points fitted by the suitable transformation, effeetively brings out the 
deviations from the fit as if seen through a mieroseope (Fig. 6), and these eorrespond 
to the deviations more or less hidden in the plot of the original raw data. However, 
to evaluate the importanee of the wiggles in the residual plot, eomparison with the raw 
values is always useful. 

Another pair of methods for x-y analysis is the smooth-rough plotting sequenee 
(Tukey 1977, 205-264; Velleman and Hoaglin 1981, eh . 6). Often it is useful to seareh 
for patterns more eomplieated and more general than a straight line. In the same way 
as in the previous definition it ean be stated that: 

data smooth plus rough, and eonsequently 
smooth = data minus rough, and 
rough = data minus smooth . 

Smoothing in general terms means applying teehniques eonsisting of running me
dians (and averages) to the data to smooth the wiggles between a few eonseeutive values 
at a time in order to obtain a clearer view of the general behaviour of the bateh without 
disturbing detail. 

The smoothing routine used here for the six hoards (Fig. 7) is ealled in short-hand 
4253H, twice (Tukey 1977, eh. 7; Velleman and Hoaglin 1981, 171-177). lt is a eom
bination of several smoothing passes using running medians of a varying number of 
eonseeutive values and a running weighted average as weil as adding the residuals 
smoothed in the same way to the initial smooth (for details see eg. Velleman and 
Hoaglin 1981, 171-177). 
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Fig. 7. The smooth of the six hoards plotted vs. decade (see text) . 
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Fig. 8. The rough of the six hoards plotted vs. decade (see text). 

Plotting the rough, on the other hand, brings out the details omitted in the smooth, 
ie. it magnifies the deviations from the latter (Fig. 8). Both should be plotted for a 
»full» picture of the data. 

A few important EDA methods, most of them concerned with data in the form of 
two-way tables (Tukey 1977, 265-542; Velleman and Hoaglin 1981, chs. 7-8) have 
to be omitted in this context due to the unsuitability of the example material for these 
purposes. Moreover, the methodological as weil as the theoretical framework of EDA 
is by no means complete, and new or refined methods are bound to appear in the near 
future. 

By now, I believe, we have learned something about the structure of Viking Period 
currency in Aland. However, as the main aim of the above is to introduce EDA to 
archaeologists, the numismatical and historical-archaeological interpretation of the 
results obtained is best left to another context. 
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