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 Abstract. Confi guration of a network and observation weights plays an 
important role in designing and establishing a geodetic network. In this 
paper, we consider single- and multi-objective optimization models in 
some numerical investigation. The results illustrate that the reliability 
model yields the best results in view of internal and external reliability 
and achievable observation precision. This result we interpret as that the 
reliability criterion is more sensitive to the confi guration of a network than 
any of the other criteria. We propose re-optimization of the network in the 
cases where very high (non-achievable) precision is required or when some 
conditions are not met in the optimization process.

Keywords: Optimization, analytical method, geodetic network, confi guration, 
weight.

Introduction1 
An optimal geodetic network is a network having high precision and reliability 
designed according to economical considerations. The fi rst step of the geodetic 
network design is zero order design (ZOD) or datum defi nition. The datum affects 
the precision of the network too. Different criteria exist for selecting the best 
datum (ZOD). Teunissen (1985) presented the ZOD according to the theory of 
generalized matrix inverses and its relations with datum and rank defi ciency of 
the design matrix. Kuang (1996) presented different criteria for ZOD, and Eshagh 
(2005) suggested the minimum norm and trace of the co-factor matrix as the best 
criteria for datum defi nition.

There are two well-known ways to fi nd the best confi guration of networks, 
i.e., fi rst order design (FOD). One can use either the trial and error or the analytical 
approaches. In the trial and error method, the objective function (OF) is computed 
with a proposed solution for the problem. If the suggested solution does not satisfy 
the OF, the solution is changed and the OF is computed again. This process is 
repeated until the requirement is satisfi ed. The analytical approaches take advantage 
of a mathematical algorithm and design the network in such a way that the quality 
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requirement of the network is satisfi ed. A pioneer in using optimization theory was 
Koch (1982, 1985) who considered quadratic programming [Bazaraa and Shety, 
1979] to optimize the confi guration of a network. Kuang (1991, 1996) developed 
this approach further and considered different types of optimization methods.

Grafarend (1975) and Schmitt (1980, 1985) presented different approaches 
for second order design (SOD) where SOD is optimal selection of the observables 
weights, and Kuang (1993) presented another approach to SOD leading to 
maximum reliability using linear programming [see e.g. Bazaraa (1974) or Smith 
et al. (1983)]. According to Eshagh (2005) numerical studies, the method of 
Kuang (1993) yields better results in SOD than other methods. Seemkooei (2001) 
considered the analytical approach to FOD, SOD and also their combinations in 
robustness points of view.

Using the method of Kuang (1996) one can obtain optimal weights and 
confi guration of the network in one step by different optimization algorithms and 
OFs. In fact, the approach proposed by Kuang (1996) to optimal design of the 
network is a combination of FOD and SOD. In this method the best confi guration 
and observation precisions are determined simultaneously in an optimal way. 
This optimal design can be carried out using different criteria as an OF. If just 
one criterion exists in the OF, it is called single-objective optimization model 
(SOOM); if two criteria exist, it is a bi-objective optimization model (BOOM) 
[Mehrabi 2002], and, if we have more than two criteria, we call it multi-objective 
optimization model (MOOM); see e.g. Kuang (1996). A simple comparison 
between different SOOMs has been carried out in Eshagh and Kiamehr (2007). 
This comparison shows that reliability is a much better criterion than the other 
criteria in SOOMs. The capability of the BOOM versus SOOM was presented 
in Eshagh (2005).

In this paper, after a quick review of SOOM and MOOM models, we compare 
them in a simple simulation study. The methodology is investigated for obtaining 
the optimum confi guration and observation weights considering the postulated 
reliability and precision requirements. The advantages and disadvantages of different 
SOOMs, such as precision, reliability and cost, as well as MOOM are presented and 
discussed. We investigate further the SOOM and MOOM and suggest the reliability 
model is better than the other SOOM and MOOM models for applying optimization 
of geodetic networks. The next section deals with a general review of the SOOMs 
and MOOMs and their mathematical models. In Section 3 we study these models 
numerically in a simple simulated network and compare the corresponding designs. 
The paper is ended by conclusions presented in Section 4.

Optimization models2 
An optimum geodetic network should have an acceptable precision, high reliability 
and low cost. A general mathematical model for network optimization can be 
symbolically written by the following OF [Schaffrin, 1985]:

  1 maxp r cα (precision)+α (reliability)+α (cost) =−  (1)
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where αp, αr  and αc are parameters (weights) related to precision, reliability and 
cost, respectively. It is obvious that when one of these coeffi cients is zero, the 
model is a BOOM and if two coeffi cients are zero it becomes a SOOM. In the 
following we continue with different SOOMs.

2.1 Single Objective Optimization Models (SOOM)
As mentioned before each one of the precision, reliability and cost criteria can 
be considered as an OF. Depending on which criterion that is regarded in the 
OF one can defi ne three different SOOMs. Each SOOM can be constrained to 
other quality factors. For instance, the precision criterion can be considered as 
the OF and the optimization is defi ned as a process to maximize the precision 
subjected to reliability and cost. Also, each SOOM can be subjected to two other 
controlling criteria. The main purpose of the analytical approach is to improve a 
primary design of the network. In this approach, the best possible confi guration 
(position shifts Δxi, Δyi, Δzi) and optimum observation weights (weight shifts Δpi) 
are sought. Some advantages of the analytical approach rather than other existing 
methods for network optimization are as follows:

Any type of geodetic observable can be considered. –
Any condition or constraint can be considered. –
All the criteria of precision, reliability and cost can be considered  –
simultaneously in the optimal design.
The optimization procedure can be performed in the sense of FOD and SOD  –
separately or simultaneously.
This methodology can be used for the optimal design of one-, two- or three- –
dimensional networks.

In the following, three types of SOOMs are reviewed based on the criteria 
of precision, reliability and cost, respectively. We call such SOOMs precision, 
reliability and cost models, respectively.

2.1.1 Precision model
Precision is the simplest criterion and that is well known. The variance-covariance 
matrix of the unknown parameters can be written in the general form:

 ( ) ( )1 12
0

T T T T T
xC A PA DD E E DD E Eσ

− − = + −  
,  (2)

where  2
0σ  is a priori variance factor, P is the initial weight matrix, A is the network 

confi guration matrix or the design matrix, D is the datum matrix including 
translation and rotation and scale parameters and E is the basis of the null space of 
the confi guration matrix A. The linearized form of Eq. (2) can be written:

 0

1 1 1 1
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x x x x
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∂ ∂ ∂ ∂∑ ∑ ∑ ∑x , (3)

where Δxi, Δyi, Δzi are unknown coordinate changes and Δpi are unknown corrections 
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to a priori weights. Equation (3) can also be represented in a vectorized matrix 
form as:
 Hw = u + ε, (4)
where

 ( ) ( ) ( ) ( )0
1 1, , vec vecT T

u u u u x xH I I H u I I u C C= Θ = Θ = − ,   and  (5)  

 ( )1 1 1 1, , , , , , , , , T
m m m nw x y z x y z p p= ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆… … . (6)

In the above relations, ε is the residual vector making the system of equations Eq. 
(4) consistent, H is the coeffi cient matrix of the expansion including the derivatives of 
Cx with respect to the vector of unknowns w, u is a known vector since the approximate 
 0

xC  and predetermined Cx are known,  Θ  is the Khatri-Rao product and vec is the 
converting operator of a matrix to vector; cf. e.g., Kuang (1996).

In fact, Eq. (4) presents a simple fi tting to a predetermined variance-
covariance matrix (of required precision). The position and weight vector w 
changes until the best possible fi t to the required precision is met. The unknown w 
can be determined by using simple quadratic programming. In this case we may 
minimize the following relation:

 
2

min
L

Hw u− →  (7a)
subject to:

 H1w – u1  ≤ 0, (7b)

  
00 11 mr R w r+ ≥ , (7c)

  
mC C w c+ ≥00 11 ,  (7d)

 0 0TD w  =     and  (7e)
 A00w ≤ b00 , (7f)

where rm, cm are pre-defi ned redundancy number and weight boundary value. The 
matrices of H1, u1, r00, R11, C00 and C11 are related to precision, reliability and cost. 
 

2L stands for L2-norm. For the details of computing these criteria, the interested 
readers are referred to Kuang (1996). Equations (7e) and (7f) are the datum 
constraints and shift limitation of unknowns; see also Kuang (1996).

2.1.2 Reliability model
Reliability can also be considered as an OF to be maximized. Since in linear 
programming [Bazaraa 1974] the OF is minimized, this OF has to be considered 
with a minus sign. Such an OF is generally written as

 ( ) 1ˆˆ T T Tv l l A A PA DD A P I l Rl
− = − = + − = −  

,  (8)

where  v̂  is the residual vector of the system of observation equations. It differs 
from ɛ presented for the precision model. The Taylor expansion of Eq. (8) is:
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where R0 is the redundancy matrix obtained from approximate a priori positions. 
Since we need just the diagonal elements of the redundancy matrix for our 
maximization problem, we can write the reliability criterion as
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where
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and  L∞
is the  L∞-norm. The above maximization problem can be summarized as:

 ( )00 11 min
i L

r R w
∞

− + →  (14)

subject to:
 H1w – u1  ≤ 0, (14a)
 00 11

T T
mc C w cγ γ+ ≤ , (14b)

 0 0TD w  =   and (14c)
 A00w ≤ b00.  (14d)

This problem can be solved by either linear programming or minimax 
programming. γ is a (3m + n) constant vector and the other parameters and 
constraints that have been introduced in the previous section. For details the reader 
is referred to Kuang (1996).

2.1.3 Cost model
Cost may also be considered as the OF to be minimized. In the analytical design 
approach the number of repetitions of each individual observation can be a criterion 
for the cost. Such an OF is generally written as the target function for optimal cost 
in the network optimization:

  
L

P min
∞
→ . (15)

In the analytical approach by specifying approximate weights  0
iP , we look 

for the best possible improvements (ΔPi) for these weights as:
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  0
i i iP = P + ΔP , (16)

where the weight improvement ΔPi is given by:

 
1

n

i
i

PP P
p
∂

∆ = ∆
∂∑ . (17)

After linearization of the OF of Eq. (15) by using a Taylor series expansion we 
obtain the minimization problem of the cost:

 00 11 minT Tc C wγ          γ+ →  (18a)

 ( ) ( )0
00 vecT

n nc I I P= Θ  and (18b)
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   ∂ ∂
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subject to:
 H1w – u1  ≤ 0, (18c)
 (r00 + R11w) ≥ rm , (18d)

 0 0TD w  =  , and  (18e)

 A00w ≤ b00 . (18f)

Similarly, all parameters and constraints have been introduced in the previous 
section. Such model can be solved by using linear programming algorithms like 
simplex. For more details about linear programming the interested reader is 
referred to e.g. Baazara and Shety (1979).

2.2 Multi-objective optimization model (MOOM)
As mentioned before, all SOOMs attempt to minimize or maximize a single 
OF describing the cost, precision or reliability. In practice there are constraints 
between each of the above criteria leading to inconsistencies in the optimization 
of the SOOM. To avoid such problems and lack of a unique minimum solution we 
can represent all OFs in one OF model [Kuang, 1996]:
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11 0011 00
( )( )
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C w c cHw u R w r r
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 − −− − −
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  

γ                       γ
 (19) 

subject to

 0 0TD w  =  , and (20)
 A00w ≤ b00 . (21)

All parameters have been defi ned in the previous parts. Considering the L2-
norm, Eq. (19) can be written as

 0 0 0 0 0 02 minT T T Tw H H w u H w u u− + → , (22)
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 A11w ≤ b11,  (24)
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Here w is the vector of unknown parameters as before, and u0 and H0 are 
known matrices.

Numerical studies3 
A simple two dimensional geodetic network is considered for our numerical 
investigations. The network confi guration is presented in Figure 1. This network 
consists of 5 points having initial coordinates and all possible distances and angles 
as well as their initial weights are considered in the optimization problem.
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Figure 1. The Network Confi guration.

Now, we should fi nd the best confi guration of the network as well as the 
best weights of observations according to the required quality. The standard error 
of 5 mm was considered as required precision of the position of net points. The 
network should be optimized in such a way that the redundancy of all observations 
is larger than rm = 0.6. The confi guration of the network is allowed to change 
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up to 3 m around each point during optimization process (–3 ≤ Δxi, Δyi, Δzi ≤ 3). 
The optimized observation weights are supposed to be positive and smaller than 
1/(5 mm)2 for the distances and 1/(1.5 sec) (in radians) for angles with the initial 
values  

i

0 2
lP 1 (7mm)=  and  

i

0 2P 1 (2sec)α =  (in radians), respectively. Before 
starting the optimization process let us determine the best datum of this network. 
As a criterion for fi nding the best datum for this network we have considered the 
minimum trace of the co-factor matrix. The best datum is defi ned when point 4 
and the direction from point 4 to 2 are kept fi xed.

Three SOOMs of precision, reliability and cost are considered as Model 
I, II and III, respectively. A MOOM is also utilized to obtain the position shifts 
and optimal observation weights in the network. The position shifts, or, in other 
words, the network confi guration vs. approximate confi guration is presented in 
Table 1.
Table 1. The obtained shift values for optimization models. Unit: metre.

Precision model Reliability 
model

Cost model MOOM

Points ∆x ∆y ∆x ∆y ∆x ∆y ∆x ∆y
1 1.909 0.306 3.148 1.467 1.519 1.596 0.600 1.200
2 –0.459 –0.287 1.450 0.925 1.718 1.074 0.0009 0.0006
3 0.371 –1.054 2.044 2.502 1.813 1.517 1.800 0.600
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 –5.632 –0.736 0.994 2.701 1.5161 1.649 1.200 0.600

It illustrates large position shifts in the network optimized by SOOMs, while 
these position shifts are considerably smaller when the network is optimized by 
the MOOM. The optimal standard errors of distances and angles after optimization 
are shown in Tables 2 and 3, respectively.
Table 2. The optimal standard errors for distance observations after optimization. I, II, 
III, and M stand for precision, reliability, cost and MOOM, respectively. Unit: metre.

Distance Optimal standard error of observations
from to I II III M

1 3 0.004 0.003 0.012 0.003
1 5 0.003 0.003 0.005 0.005
2 3 0.003 0.005 0.012 0.002
2 4 0.003 0.003 0.008 0.003
2 5 0.003 0.003 0.012 0.003
3 4 0.002 0.002 0.012 0.003
3 5 0.003 0.003 0.012 0.003
4 5 0.012 0.004 0.012 0.003
1 2 0.003 0.003 0.012 0.003
1 4 0.003 0.001 0.012 0.003



Nordic Journal of Surveying and Real Estate Research Volume 6, Number 1, 2009

Table 3. The optimal standard errors for angles observations. I, II, III, and M stand for 
precision, reliability, cost and MOOM, respectively. Unit: sec.

Angles Optimal standard errors 
(sec)

st from to I II III M
1 4 5 0.58 0.89 1.63 0.89
1 4 3 0.9 0.64 1.63 1.63
2 3 4 0.69 0.55 1.63 0.89
2 5 3 1.15 0.66 1.63 0.57
3 1 4 1.60 0.76 1.63 0.84
3 1 5 0.78 0.98 1.63 N/A
3 5 2 0.67 0.65 1.63 N/A
4 5 1 0.68 0.89 1.63 0.69
4 5 2 0.90 0.51 1.63 0.68
4 5 3 0.62 0.86 1.63 0.89
5 3 4 0.58 0.65 1.63 0.68
5 1 4 0.87 0.58 1.63 0.51
5 2 1 0.67 0.89 1.63 0.51

According to the initial precision of distances (5 mm), one can observe that 
all optimal standard errors of the distances are satisfi ed in the precision model 
except for one observable. The reliability model seems to have good capability 
to preserve the required accuracy. As could be expected, the cost model is not 
as good with respect to accuracy as the models I and II. These results agree with 
those obtained by Eshagh (2005) and Eshagh and Kiamehr (2007). As we will 
see in Table 8 and Figure 2, there is no proper internal and external reliability 
for the cost model. The MOOM seems to be the most fl exible model, and, as one 
may observe, all standard errors of the positions are smaller than the requested 
accuracy (5 mm) in Table 7.

In Table 3 the standard errors of the angles are illustrated. The requested 
accuracy for the angles is 1 arc second. The precision model shows good agreements 
of the optimal precision with required accuracy except for two observables. A very 
bad result is seen in the cost model. As expected, the reliability model presents 
very good agreement with the considered accuracy. However, one observable has 
larger standard error than the requested accuracy in the multi-objective model. 
The optimal weights for some observations are unsuitable as they are too large 
and therefore the observation variances are zero or close to zero. We know that 
observation weights are always assumed to be positive numbers. Now, after 
performing the optimization procedure, it is possible to see small weights for some 
observations yielding large standard deviations. On the other hand, it is of interest 
to have small weights to exclude unnecessary observations from optimization 
procedure. We use minimum and maximum bounds for the observable precision 
but some constraints are inconsistent even if we defi ne lower and upper bounds for 
them. The cost constraint is inconsistent with reliability and precision constraints, 
and then it violates some of the constraints. According to Table 3 we can neglect 
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the angles 315 and 352 which have inappropriate variances and weights. Having 
eliminated those observations we can perform a new optimization process 
excluding the mentioned angles. The results are shows in Tables 4–6.

Table 4. The new optimal position 
shifts obtained after eliminating 
inappropriate observations. Unit: 
metre.

Position shifts
MOOM

Points ∆x ∆y 
1 2.958 1.242
2 2.958 1.848
3 –1.158 1.758
4 0.000 0.000
5 –1.158 1.758

Table 5. The new optimal standard errors 
for distance observations after eliminating 
insignifi cant observations. 
Unit: metre.

σ (m)
from to MOOM

1 3 0.002
1 5 0.003
2 3 0.003
2 4 0.002
2 5 0.003
3 4 0.002
3 5 0.005
4 5 0.005
1 2 0.012
1 4 0.003

Table 6. Optimal standard errors 
of the angles after eliminating 
insignifi cant observations. 
Unit: sec.

Angles MOOMst from to
1 4 5 0.61
1 4 3 0.68
2 3 4 0.58
2 5 3 0.68
3 1 4 0.51
4 5 1 0.89
4 5 2 0.68
4 5 3 0.57
5 3 4 0.57
5 1 4 0.89
5 2 1 0.51

Table 7. The standard errors for three 
optimization models, I, II, III, and M stand 
for precision, reliability, cost and MOOM, 
respectively.

Points σ (Achieved)
(mm)

Preci-
sion 
re-

quired
I II III M

1 1 0.3 1 0.8 5
3 2 5 2.8 5

2 2 1 3 1 5
3 2 5 2 5

3 1 0.5 1 0.8 5
4 2 5 2.9 5

4 0 0 0 0 5
0 0 0 0 5

5 2 1 3 1.9 5
1 1 4 1.8 5

trace 17 9.8 25 14

Table 4 illustrates the position shifts after eliminating the insignifi cant 
observations (the observations having very low weights from the optimization 
process) in re-optimization. We may conclude that the elimination of observations 
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causes larger position shifts in the network confi guration. Tables 5 and 6 show the 
optimal standard errors of the distance and angle observables. This study shows 
that the confi guration of the network changes considerably to satisfy the required 
precision. One can interpret these results as compensation of accuracy by changing 
the confi guration.

Table 7 shows the square roots of the diagonal elements of the variance-
covariance matrix of the positions. The MOOM is the best after the reliability 
model. We experienced that the convergence of the optimization process based 
on MOOM takes more time versus the SOOMs. There is no inconsistency 
problem in optimization by MOOM, because all criteria are presented in one 
OF. Furthermore, for optimization of the network by using a SOOM we can 
vary the norm for minimizing or maximizing each single OF. All models satisfy 
the required precision (5 mm) in Table 7, but we have mentioned that reliability 
model has best internal and external reliability among all models. The cost model 
is inconsistent with precision and reliability conditions inferior vs. other models. 
Also Table 7 shows that the reliability model yields a smaller trace of the variance-
covariance matrix than the other models and it agrees with precision and reliability 
constraints. Similarly we have the same situation as the precision model, but the 
OF is not similar to reliability and cost models. In the precision model the network 
is fi tted to the required precision in a least squares sense (based on L2 norm). In 
other words, we obtain the best fi t to the desired precision of network by changing 
the network confi guration and observations precision. In this case, the standard 
error of the positions is close to the desired one. Putting a precision constraint 
forces the optimization to deliver smaller error for the positions than the required 
one. However, in the reliability model the  L∞ -norm is used so that it maximizes 
the minimum reliability of the network in the optimization procedure. In such 

Table 8. Internal reliability for the three 
optimization models I, II, III, and M stand for 
precision, reliability, cost and MOOM, respectively.

Points Internal Reliability 
on the distances (mm)

from to I II III M
1 4 0.006 0.002 0.006 0.005
1 5 0.006 0.003 0.003 0.006
2 3 0.007 0.005 0.009 0.007
3 4 0.006 0.002 0.007 0.005
2 4 0.007 0.004 0.016 0.007
2 5 0.007 0.004 0.014 0.006
1 3 0.007 0.003 0.008 0.005
1 2 0.007 0.004 0.01 0.01
3 5 0.006 0.003 0.007 0.007
4 5 0.012 0.006 0.01 0.01
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a case, there is no fi tting to the residuals and the OF of reliability is maximized 
directly. The reliability model is quite consistent with precision condition as by 
increasing of reliability, the network tries to accept further observations. Thus, 
the position errors obtained from the least squares method (precision model) 
are decreasing when number of observations increase and reliability criterion 
satisfi es the precision requirements inherently. However there is no lower bound 
for the position errors in the reliability model, and they are minimized as much as 
possible while in the precision model the errors are delivered smaller but close to 
the required position errors. This is why the trace of variance-covariance matrix 
and position shifts due to the reliability model are smaller and larger than the 
precision model, respectively.

The absolute error ellipses for all fi ve network points after performing 
optimization by SOOMs and MOOM are presented in Table 9.
Table 9. Absolute error ellipses for all optimization models. a and b are the semi-major 
and the minor axes of the error ellipses. Unit: mm.

Points Before optimization After optimization

a b a b
I II III M I II III M

1 29 18 3 2 5 3 1 0.3 1 0.8
2 38 28 4 2 5 2 1 1 1 0.8
3 30 25 4 2 5 3 1 0.4 1 0.7
4 0 0 0 0 0 0 0 0 0 0
5 27 18 2 1 4 2 1 0.7 3 2

The effect of the largest undetectable gross error on the estimated positions 
obtained in a least squares adjustment are presented in Figure 2 for the x- and 
y-parameters. It is obvious that the reliability model yields the smallest external 
reliability.

The fi gure illustrates the external reliability of each position component of 
the fi ve network points. As would be expected, a network having high internal 
reliability, as presented in Table 8 delivers small external reliability, too.

Figure 2. The comparison of external reliabilities for optimization models.
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Conclusions4 
Before any measurement campaign is started, the geodesist should know the 
goal and requirements of the geodetic network to be designed. As is obvious, 
the highest precision and reliability of a geodetic network are expected, if all the 
observations are measured with highest accuracy. Since time and cost limitations 
do not allow extreme quality of a network, an optimum survey planning has to 
be made to achieve some prescribed design criteria with minimum effort. The 
main purpose is therefore to select the best datum, confi guration and suitable 
precision for observations for satisfying client criteria. In this paper single- and 
multi-objective optimization models were reviewed. The models were applied 
in a simple geodetic network to illustrate their performance. Numerical results 
show that the best SOOM is Model II (reliability model), maximizing the internal 
reliability. On the other hand, the reliability model also yields the best results in 
precision. The numerical results show that the reliability model delivers larger 
confi guration changes than the other SOOMs. It means that the initial confi guration 
was not well fi tted to the reliability model. It could also suggest that reliability is a 
more sensitive criterion to confi guration than any of the other OFs. In some cases 
contradictions between constraints exist, and some of the constraints may not be 
met. However, as we showed, such a problem seldom happens in the reliability 
model. One way for overcoming such problems is to use the MOOM, by which 
the constraints would be fulfi lled simultaneously in the best way. The analytical 
solution of the geodetic network is one of the best methods to design a network in 
such a way that it becomes an optimum network. Sometimes in the optimization 
process some observations get unrealistic weights corresponding to very high 
precision and some of the requirements are not met. In such a case re-optimization 
of the network is suggested after deleting those observables. In our numerical 
studies the MOOM yielded such results and we re-optimized the network. It is 
interesting to see that after eliminating the observables having unrealistic weights 
and re-optimizing the network, we got larger position changes with respect to 
previous optimization. Also we found that optimization based on MOOM does not 
converge as fast as the reliability model.
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