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The challenge for supervised neural net models of morpho-syntax has been to

demonstrate that language learning that appears to entail a data base of rules

and exceptions can be simulated without the need for these structures to be

present. This article reviews connectionist models of morpho-syntax which have

attempted to meet this challenge. The article begins with a background

description of how connectionist models work and then proceeds to explain the

way in which both static and sequential models of the acquisition of morpho­

syntax have been developed. That static connectionist models have been able to

simulate the development of both verbal and nominal morphology is discussed in

the context of how these models question the dual mechanism model of

morphological processing (Pinker, 1999). The role of sequential connectionist

models in understanding of the treatment of plural nouns in compound words is
considered in detail. Finally, how morpho-syntax might be learnt in considered in

an overview of developmental models.
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1. INTRODUCTION

There has been an assumption that Iearning

a Ianguage invoIves Iearning a series of ruIes

and exceptions to those ruIes. This view has

been chalIenged by connectionist modellers

who have been abIe to demonstrate that be­

haviour, which appears to entaiI a database
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of ruIes and exceptions, can be simulated

without these structures being present.

Thus, connectionist modellers have ques­

tioned the dual mechanism model of mor­

phosyntactic processing; presented evidence

that morpho-syntax can be Iearnt simpIy by

exposure to the Iinguistic input and identi­

hed mechanisms by which Ianguage acqui­

sition might proceed. Several models that

have investigated morpho-syntactic aspects

oflanguage processing in supervised connec­

tionist architectures are reviewed here to­

gether with an overview ofhow connection­

ist models are constructed and trained.
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2. THE CHALLENGE FOR
CONNECTIONIST MODELS OF
MORPHO-SYNTACTIC ASPECTS
OF LANGUAGE PROCESSING

Classical (symbolic) models assume that
human cognition includes the capacity to

use stored mental rules to process input from
the environment (Fodor & Pylyshyn, 1988).
Implicit in Chomsky's (1959) idea, that chil­
dren use some innate, language specific
mechanism to uncover the underlying gram­
matical rules of their native language is the
notion that there are rules there to be discov­
ered. This belief that language learning in­
volves the acquisition of a series of mies
(Chomsky; Fodor & Pylyshyn; Pinker,
1999) is driven in pan by examples ofover­
regularisation errors produced by children
learning the past tense ofEnglish verbs (say­
ing eated rather than ate) or the plural of
English nouns (saying mouses rather than
mice). The child will not hear these overreg­
ularisation errors in the language they hear
yet they still make them. Overregularisation
errors have been seen as evidence for the
misapplication of the stored rule "to form
past tense add -ed to the verb stern" or "to
form the plural add -s to the noun stern".
Children would be expected to make errors
as they learn a skill. That children can make
subject and verb agree in a sentence they
have never heard before is also thought to be
evidence ofpossession ofa general rule about
the relation between subject and verb that
can be applied to any sentence.

Rumelhart and McClelland (1986) and
other connectionist modellers (e.g. Elman,
Bates, Johnson, Karmiloff-Smith, Parisi and
Plunkett, 1996) while agreeing that it may
be possible to describe language in rule-like
terms, argue that there might not actually be
any rules available for the child to represent.
Rumelhart and McClelland and many oth-
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er connectionist modellers have been able to
simulate rule like behaviour in artificial neu­
ral networks that have no specific knowledge
of the rules of grammar. Connectionist
models do not have explicit declarative rules
ofthe kind "to form past tense add -ed to the
verb stern" or "to form plural add -s to noun
stern". Neither do they have a specific mem­
ory store to accommodate the list of excep­
tions that would be required to override the
application of this rule to irregular verbs
(verbs such as eat that do not form the past
tense by adding -ed to the verb stern or
nouns such as mouse that do not form the
plural by adding -s to the noun stern). In
connectionist models knowledge about all
verbs, both regular and irregular, is stored in
the same general matrix ofinformation. The
connectionist view is that general associative
memory processes are used to learn lan­
guage. These processes are guided by the fact
that language appears in highly regular pat­
terns (Saffran, 2001) and the way learning
proceeds is influenced by the frequencywith
which linguistic items appear in the input
during the acquisition process.

The challenge for connectionist models of
cognition has been to demonstrate that be­
haviour, which appears to entail a database
of mies and exceptions, can be simulated
without these structures being present. Con­
nectionist models have been used to investi­
gate many areas of cognition e.g. reading
aloud (Harm, McCandliss, & Seidenberg,
2003; Harm & Seidenberg, 1999,2001);
syntactic processing (Seidenberg,
1997,1999; Seidenberg & Elman, 1999);
spoken word recognition, (Elman & Mc­
Clelland, 1986; Christiansen, Allen, & Sei­
denberg, 1998) and lexical access (Dell,
Chang & Griffin, 1999; Dell, Schwartz,
Martin, Saffran, & Gagnon 1997; Dell,
Burger & Svec, 1997).
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3. HOW CONNECTIONIST
MODELSWORK

Neurally inspired

Connectionism (also known as "parallel dis­

tributed processing or "neural networks") is

an attempt to design computer models in­

spired by how the brain might process infor­

mation. The brain is thought to consist ofa

large number of simple processors called

neurons that are densely interconnected in a

complex network. These neurons appear to

work simultaneously and cooperatively to

process information. Connectionist models

attempt to simulate these propenies. They

consist oflarge numbers ofsimple processors

called units that are densely interconnected

in a complex network. They operate simul­

taneously and in cooperation with each oth­

ero At the beginning of training the weight

ofconnection between any two units is ran­

dom. The network is trained on a represen­

tation ofstimuli that the human brain has to

process. This could be a representation of a

human face and a represenration ofthe name

of the person with that face. The weights

conneeting units that represent certain faces

and units that represent cenain names will

be strengthened as the network is exposed to

particular faces being linked to particular

names during training. Conversely weights

will be weakened between units representing

faces and names that are not paired together

in the training set.

Parallelprocessing and distributed
representations

Connectionist models involve parallel

processing usually ofdistributed representa­
tions. This is a departure from classical mod­

els ofcognition in which computation is se­

rial and knowledge representation is local.

Serial processing means that each process is

carried out in sequence and the outcome of

one process affects the processing ofthe next

stage. Parallel processing means that more

than one process is carried out concurrently.

Localist representation means that each

stimulus item is represented by one token

and this token is stored in a space in the

model totally independently from all other

tokens. In localist models, for example, in­

formation about the word dog is stored in

one place and information about the word

cat is stored in another place. Dictionaries

and telephone directories use localist repre­

sentation. Localist coding is sometimes re­

ferred to as "grandmother cell representa­

tion" because it would suggest that we have

a cell tuned uniquely to each possible pat­

tern, including a cell for detecting our

grandmother. Distributed representation (as

used in connectionist models) means that

there is no one place where a particular stim­

ulus item can be located. Knowledge about

dog is distributed across many units in a con­

nectionist model. Both dogand cat might be

connected to a urut "has fui' but only dog

would be linked to "barks" and only "cat"
would be linked to "meows." Distributed

representations do not directly correspond

with the individual features of the stimuli

being encoded. Instead, patterns of activity

in many (often all) of the cells in a network

collectively encode the stimulus. It may be

possible to determine the elements of the

stimuli which each cell in the model is pref­

erentially responsive to but the point is that

there is no one to one mapping between el­

ements of the stimuli and the cells in the

neural net. This means that the relationship

between external stimuli and the internai

representations in a neural net are difficult to

interpret unambiguously and therefore dif­

ficult to analyse. However, distributed rep­

resentations are more economical (require



80

fewer neurons) and they permit greater gen­

eralization than localist represemations. Fur­
thermore, distributed represemations permit
access to an item even when full knowledge

of that item is not available to the enquirer.

In this way connectionist models are like hu­

man memory in that they are content ad­
dressable. Using distributed represemation
even if the word dog has been forgotten (or

it is presemed in noise) it can be triggered

(just as it could from a person) by clues such
as "it barks" it hasfitr'. Access would not be
possible from a localist system (a dictionary)

if the word string dog had been forgotten.
Localist represemations also make it difficult

to respond to in-between stimuli, e.g. if

there is a white car detector and a black car
detector, a grey car will not be recognized.

Although in the early PDP models represen­
tations were by definition distributed, some
researchers e.g. Gary Dell (Dell, Chang &

Griffin, 1999; Dell, Schwartz, Martin, Saf­

fran, & Gagnon 1997; Del!, Burger & Svec,
1997) have developed connectionist models

using localist coding schemes. lt is now es­
tablished that the distinction between local­

ist and distributed coding is not a dichoto­
my, rather completely distributed and com­

pletely localist schemes lie at extremes of a
continuum ofthe 'coarseness' ofcoding used
by connectionist modellers.

Although connectionist models are neu­
rally inspired, it is important to note that it

is not claimed that they are realistic models
of the brain. Connectionist modellers claim

only that their models might provide a use­

ful starting point for understanding how
cognitive computations might be performed
(Christiansen & Chater, 1999). Influential

work that has led to our currem understand­
ing of the role connectionism might play in
understanding cognition include Rosen­
blatt, (1958), Amari, (1967), Grossberg,
(1967), Kohonen, (1972, 1989), Oja,
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(1982), Sejnowski, & Rosenberg (1986),

Haykin, (1999).

4. TYPES OF CONNECTIONIST

MODEL

The main division between types of neural

net models is between models which learn in
a supervised or unsupervised environment.

Models that are driven by supervised learn­
ing proceed under the control of a "teacher

signal" that gives the network feedback

about its performance. In contrast unsuper­
vised systems require no feedback. Unsuper­
vised systems organise themselves on the

basis of the statistical properties in the input,

irrespective of whether their outputs have
the desired consequences for later stages of

analysis.
Kohonen artificial neural networks

(KANNs) (Kohonen, 1989) for instance fall
into the category of"unsupervised learning"

because the multivariate algorithm used
seeks out "clusters" in the data (Everitt,

1993). Unsupervised learning allows the
network to group items together on the ba­

sis of their perceived closeness in n- dimen­
sional hyperspace (where n is the number of
variables or observations made on each

item). During the training process the net­

work is presented with each input pattern in
mrn, and all the nodes calculate their activa­
tion levels on the basis of the Euclidean dis­
tance (straight line distance between two

points) between them and the input vector

in n-dimensional space. Thus a node whose

weight vector closely matches the input vec­
tor will have a small activation level, and a
node whose weight vector is very different

from the input vector will have a large acti­
vation level. The node in the network with
the smallest activation level is deemed to be
the "winner" for the current input vector.
The winning node and some of the nodes
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around it are then allowed to adjust their

weight vectors to match che current input

vector more closely. The nodes included in

the set which are allowed to adjust cheir

weights are said to belong to che "neighbour­
hood" ofche winner. The size ofche winner's

neighbourhood is varied chroughout the

training process. Initiallyall of che nodes in
che network are included in the neighbour­

hood ofche winner, but as training proceeds

che size of che neighbourhood is decreased

linearly after each presentation of che com­
plete "training set" (alI the items being ana­

lysed), until it includes only the winner it­
self. The amount by which che nodes in che

neighbourhood are allowed to adjust their
weights is also reduced linearly chroughout

che training period. The factor which gov­
erns the size of the weight alterations is

known as che learning rate. The effect ofche
"learning rule" (weight update algorichm) is

to distribute the neurons evenly chroughout

che region of n-dimensional space populat­
ed byche trainingset (Hecht-Nielsen, 1990;

Kohonen, 1989). The neuron with the

weight vector closest to a given input pattern
will win for chat pattern and for any ocher

input patterns chat it is closest to. Input pat­
terns which allow che same node to win are

then deemed to be in the same group, and a
map ofcheir relationship can be drawn with

a line enclosing them. By training with net­

works of increasing size a map with several
levels ofgroups or "contours" can be drawn.

Construction of these maps allows close ex­
amination of the relationships between the
items in che training set. Unsupervised mod­

els have been used to investigate many areas
of language acquisition such as syntactic

processing Scholtes, 1992a, 1993 and se­
mantics and pragmatics (Honelka, 1997,
2000; Honelka, Pulkki and Kohonen, 1995;

Honelka and Vepsalainen, 1991). Morpho­
logical processing, thl'l focus of this article,

has also been investigated using unsuper­

vised neural net models, Creutz & Lagus,
(2002).

Supervised models incorporate a teacher

signal chat produces an error signal iffor in­

stance che wrong past tense is output in re­

sponse to a verb stern and che weights in che
model are adjusted. The success of a model

is judged by its error. That is, how much dif­
ference there is between the actual output

che model produces and what che target out­

put should be. This difference is squared (to
remove negative values) and chen the square

root is calculated and this figure, termed
"root mean square" is usually quoted as che

error term in connectionist papers.
Supervised connectionist models chat have

been used by those interested in language

acquisition have been of two main types.
These are models chat can learn static pat­

terns and models chat can learn sequential

patterns.

4.1 Models for static patterns

Static models learn chat a particular input
should be paired wich a particular output. For

instance static models of the English past
tense can learn to output che "ed' suffIx when

a regular verb is input, but not to output it

when an irregularverb is presented. To under­
stand how a static connecrionist model works

it is useful to take che example ofa model chat

learns to pair certain sounds wich certain pat­
terns of letters (a model chat learns to simu­
late reading aloud). Connectionist models
have an input layer where che stirnulus is pre­

sented co che network. In this case che stimu­
lus would be a representation ofa word. The

network would be required to output che cor­
rect pronunciation for chat word. At hrst (ear­

ly in training) che network would fmd it dif­
hcult to produce che right sound output to

correspond wich each word input and would
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produce a random output (similarIy to a child

Iearning to read). The network is then correct­

ed on what the correct pronunciation should

be. The network Iearns from being correeted

and changes the weights of the connections

between the input and output units in such a

way that the next time the word in presented

at input it will produce an output which is

eloser to the correct pronunciation. Thus,

over the period oftraining, a successful mod­

el builds a set ofconneetions that will be able

to pair the correet output with each input.

Figure 1 shows a typica1 architecture ofa stat­

ic mode!. During training, similar input pat­

terns become represented in a similar form in

the layers (termed hidden layers) between the

network's input and output layers thus facili­

tating the network's ability to generate the

correct output for any input, ineluding pre­

viously unseen items.

Figure 1. Typical architecture ofa static con­
nectionist model

Implications ofconnectionist modelling in

relation to a dual or single route mechanism

A number ofstatic models have been influen­

tial in demonstrating that both verbal and

nominal morphology in EngIish can be learnt

using single route architectures with only an

associative memory system and without the
need for deelarative mIes ofthe kind "to form

past tense add -ed to the verb stern" or to
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make pIural add -s to the noun stern". As such

static models have been able to offer alterna­

tive explanations for many lines of evidence

put forward in support ofa dual route model

of morphology. Pinker (1991, 1994, 1999)

and others (e.g., Marcus, Brinkmann, Clah­

sen, Wiese & Pinker, 1995) have developed

the dual mechanism model that attempts to

unite the elassic symbolic view of Ianguage

with associative memory based accounts of

language processing. The dual mechanism

model proposes that items of regular inflec­

tional morphology are rule governed but less

systematic features of Ianguage such as irreg­

ular verbs and nouns are learned and repre­

sented using associative memory systems.

Thus, irregulars are learned on a case by case

basis. However, they are not simply learned as

separate examples by rote memory systems

and stored as unique, isolated items. Instead,

items which share phonetic similarly (e.g. singl

sangl sung: ringl rangl rung) appear to have

overlapping representations (Chand1er,

1993).
A series ofconnectionist models that have

been able to learn items of inflectional mor­

phology are described below. In each of these

models any Iearning that takes place is driv­

en by associative memory processes learning

patterns and frequencies recoverable from

the input. As such, these models raise ques­

tions for the viewpoint that inflectional

morphology is mediated by a dual mecha­

nism involving both symbolic and associa­

tive learning.

The role ofinputfrequency in learning by

single route models

Learning majority default systems

Inflectional systems such as English past

tense, where regular (default) morphology has

a much higher type frequency than irreguIar
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morphology are referred to as majority default
systems. Rumelhart and McClelland (1986a),

who were the first to develop a neural network

able to demonstrate that a single mechanism

might be sufficient to learn an aspect ofmor­
phology, used a static connectionist model

and modelled the English past tense (a major­

ity default system). Their modellearnt to out­
put the "ed' suffIx when a regular verb is in­

put, but not to output it when an irregular

verb is presented. Rumelhart and McClelland
were able to model the three stages that chil­

dren demonstrate, to some degree or other, in

acquiring the past tense ofsome English verbs
(Bowerman, 1982; Brown, 1988; Marcus,
Pinker, Ullman, Hollander, Rosen and Xu,

1992). In the first stage, children only use a

few past tense verbs and these tend to be

mainly high frequency irregular verbs on
which they make few errors. In the second

stage children begin to use many past tenses,
the majority ofwhich are regularverbs. At this

stage children appear to have leamed rules
which guide their behaviour, in that they

make overregularizations on irregular verbs
which they could use correctly at stage one

(e.g., using 'buyed' instead of 'bought' as the

past tense of the verb to 'buyl. This, it is ar­
gued, must be due to rule learning because the

children never hear these overregularisations

in the input they receive. At stage three they

stop making overregularization errors and are
able to use the correct form of irregular and
regular verbs. This has been described as the

U-shaped profile of learning. By altering the
balance between the frequency ofregular and
irregular verbs in the input to their model, at

various stages of leaming, Rumelhart and
McClelland demonstrated evidence of these

three stages oflearning in their model. Initial­
ly the network was trained on eight highly

frequent irregular verbs and 2 regular verbs
and the net showed performance similar to
children at stage 1. The training set was then

changed to 420 medium frequency verbs
(80% ofwhich were regularverbs) and initial­

ly the network showed evidence ofoverregu­

larising irregular verbs but of being able to
produce the correct past tense for regular

verbs (i.e., similar to stage 2 of child behav­

iour). Later in training, the network made few
errors in forrning the correct past tense of the

420 verbs (stage 3 behaviour). Furthermore,

when the network was tested on 86 unseen
low frequencyverbs (80% regular), it demon­

strated an ability to generalise to these new

forms.
Rumelhart and McClelland's (1986a)

model has received much criticism (e.g.
Pinker & Prince, 1988) mainly because the
increase in training from 10 to 420 verbs is

not representative of the exposure to the 2

types ofverb that children receive. Howev­
er, Plunkett and Marchman (1991) ad­

dressed this issue and successfully modelled

the U shaped proftle using a training set in
which the size of the vocabulary was held

constant at 500 verbs. Plunkett and March­
man trained a network with an architecmre

similar to that shown in Figure 1 using an
artificiallexicon ofverb sterns and past tens­

es. The artificial verbs mimicked the phono­

logical pattems found in English verbs. Im­

portantly, Plunkett and Marchman (1991)
found that their network could leam irregu­

lar past tenses if the type and token ratios

approximated those in English. In a later
simulation, PlunkettandMarchman (1993)
gradually increased the 'training set from

from 20-500 verbs. From the results of this
simulation, Plunkett and Marchman con­

cluded that a critical mass of exposure to

verbs is needed before the change from rote
leaming (memory) to system building (rule

like behaviour) can occur (Marchman &

Bates, 1994; Plunkett and Marchman,

1996). Indicating that exposure to the lin­
guistic input plays a critical role in acquiring
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morphology. MacWhinney and Leinbach
(1986) and Cottrell and Plunkett (1991)
also produced successful models ofpast tense

acquisition, having addressed the criticisms
levelled at the Rumelhart and McClelland
mode!.

An aspect of the success of the Rumelhart
and McClelland (1986) model was that it

was able to demonstrate (regardless of
whether the frequencies represented were

realistic or not) that the frequency ofthe two
types ofmorphology had a direct effect upon

learning about regular and irregular mor­
phology in English. However, Prasada and

Pinker (1993) have argued that the fact that

connectionist models rely so heavily on the
balance of frequency between regular and

irregular morphology, is acruallya disadvan­

tage of this approach to language learning.

Learning minority default systems

Prasada and Pinker (1993) argue that Rume­

lhart and McClelland were onlyable to dem­
onstrate generalisation in models ofthe Eng­

lish past tense because of the particular fre­
quency make-up of the English verbs. The

default past tense ending (i.e. the regular [­
ed] ending) has (by far) the highest type fre­

quency in the input but many regular verbs
have low individual token frequencies. Irreg­
ular verbs have Iowa type frequency but
many individual verbs have high token fre­

quencies (e.g., go-went, see-saw). Prasada

and Pinker argue that this distribution pat­

tern allows the networks to construct a sys­
tem in which irregulars are represented as a
series of phonological sub-categories and all

other verbs are mediated by a large default
category. Thus, an inflectional system such

as the German or Arabic plural system which
has a default ending, which has both low

type frequency and low token frequency
could not be modelled. Furthermore, Mar-

Jenny Hayes

cus, et al (1995) have argued that the Ger­
man plural system is quite arbitrary in that

while there are some patterns ofgender and
phonology which dictate which plural end­

ing is applied to nouns, there are long lisrs

of exceptions to each pattern. However, a
series ofconnectionist models with different

architectures developed by Hahn and Naki­
sa (2000) were able to predict approximate­

ly 80% ofGerman plural forms. Thus, they
demonstrated that neural net models were

able ta learn the underlying structure of
German plurals. Both single route and dual

route computational models were tested and
interestingly it was found that dual route

models did not show superior performance.

By actually building and testing a dual route
model, Hahn and Nakisa were able ta dem­

onstrate the process that a dual route system
would have to undergo in order to produce
the correct plural ending. First1y, any noun
selected was "looked up" in the associative

memory system to see if the plural form was
stored. If the item was not found (various

thresholds of activation of the associative
memory store were tested before the rule was

applied), the rule would be adopted and the
default ending was applied. The argument

had been that single route models would not
be able to cope with a minority default be­

cause they work by learning the small
number of irregulars and applying the rule
to the vast majority ofother items. Thus, in

the case ofa minority default there would be

too many items to have to learn and stare in
an associative mechanism. By instantiating a

dual route model, Hahn and Nakisa demon­
srrated that as dual route models also have a

pattern-associator facility, they are just as
dependent as single route models on the bal­
ance between the frequency of regular and
irregular plurals in the input. The rule is only
applied once the item has not been found in

associative memory, so the pattern associator
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element of a dual mechanism model, also
has to store a large number of examples
where a minority default situation exists.
Plunkett and Nakisa (1997) have also suc­
cessfully simulated learning of the Arabic
minority plural system and Daugherty and
Hare (1993) and Hare, Elman and Daugh­

erty (1995) have modelled old English verbs,
which also have a minority default (i.e. only
17% of items have regular past tenses).

Learning when the type frequency of the
irregular category is very 10w

A further criticism of connectionist models
ofmorphological acquisition centres around
Marcus' (1995a) daim thatwhile itwas pos­
sible to model the acquisition of the past
tense of verbs it would not be possible to
model the acquisition of the plurals ofEng­
lish nouns. This was because the success of
the connectionist models that simulated
learning of the past tense was driven by the
fact that there were sufficient numbers ofir­
regular verbs to stop iterns being overregu­
larised at an unrealistic rate. However, Mar­
cus daimed that there may not be a sufficient
critical mass of irregular nouns to stop all
nouns being regularised by a connectionist
mode!. Like the past tense, English regular
plurals involve the addition of a suffIx and
like many irregular verbs, several irregular
plurals are formed by changing the internal
vowel in the stern (e.g., goose becomes geese).
Marcus, Brown (1973), and Marchman,
Plunkett and Goodman (1997) have report­
ed similar time courses for the acquisition of
both types ofmorphology, and evidence that
the U shaped curve of development occurs
in both types of morphology. However, as
Marcus points out, there are also differenc­
es. While there are approximately 100 com­
monly used irregular verbs (e.g., go-went,
see-saw), there are onlyseven frequencly used

irregular plurals in English (man -men,
woman- women, child-<:hildren, tooth-teeth,
foot-feet, mouse-mice, goose-geese). However,
Marchman et al (1997) showed that irregu­
lar plurals are frequently exemplifIed in chil­
dren's early lexicons. This high token fre­
quency of irregular plura1s stops these items
being dominated by the far more type fre­
quent regular plurals. Plunkett and Juola
(1999) have in fact developed a model of
English past tense and plural morphology
using a single mechanism connectionist net­
work. Plunkett and Juola's model showed a
similar developmental profIle as children, in
that nouns were learned more quick1y than
verbs and early performance was character­
ised by few errors but later performance saw
the development of the U-shaped profIle for
both nouns and verbs.

Models addressing the behaviouraL evidence
for a duaL route modeL

Thus, connectionist models have been able
to learn static patterns of both verbal and
nominal inflectional morphology when the
default is both the majority or the minority
category. They have also been able to learn
to produce the correct morphology when
the irregular category is very smal!. These
models have all been used to argue for a sin­
gle route mechanism of inflectional mor­
phology. Other models (examples of which
are described below) have addressed some of
the behavioural evidence put forward by
supporters of the dual mechanism mode!.

The effects of frequency on irregular (but
not regular morphology)

One ofthe most frequencly cited lines ofevi­
dence for the dual mechanism model is that
irregular morphology (because it is stored
with the stern in the lexicon) is subject to fre-
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quency effects but regular morphology is not
(Pinker, 1991). Daugherty and Seidenberg
(1994) have demonstrated that neural nets

can also account for this phenomenon. Reg­
ular, "rule governed" words have phonetic

patterns that are vety frequent in the input. In
other words, regularverbs have lots of"neigh­
bours" that are sirnilar in sound. However,

irregulars have far fewer phonetic neighbours.
Thus, performance on irregulars depends far

more on how otten the language learner is
exposed to these items (than is the case for

regulars) because the correet past tense cannot

be learned from a large nurnber ofsimilar ex­
amples.

Evidence that brain injured patients are

impaired on the production of either
regular or irregular inflections

Joanisse and Seidenberg (1999) addressed the
evidence that some brain injured patients

seem to be impaired on producing regular
morphology, and others seem to be impaired

on producing irregular past tenses. This, it is
argued, provides evidence for the fact that the

two types ofmorphology are mediated by two
separate areas of the brain. Joanisse and Sei­
denberg showed that damage to either pho­
nological information or semantic informa­

tion within a single route model can simulate

these types of impairments.

Single route static models have been able to
simulate the development of both verbal
(Rurnelhart and McClelland, 1986a; Plun­

kett and Marchman, 1991) and nominal

morphology (Plunkett and Juola, 1999) in
English and have been able ta find alternative
explanations for many lines of evidence put
forward in support of a dual route model of
morphology in English (e.g. Daugherty and

Seidenberg, 1994; Joanisse and Seidenberg,
1999).
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4.2 Sequential models

In addition to the use of static models by
psycholinguists, many researchers have

sought ta investigate how the sequential

processing of language rnight be represent­
ed in a neural network, a mechanism based

on parallel computation. One approach has
been to represent time implicitly through its
effects on processing rather than explicitly in

the architecture of a model. Elman's (1990)
simple recurrent network (SRN) uses recur­

rent links, as first suggested byJordan, 1986,
between the hidden units (1ayers between

the input and the output units) and other
units, termed context units, that store repre­
sentations of prior internal states (weights

between connections) of the network. Con­
text units can be thought ofas the network's

memory stores. As the context units link
back to the hidden units, at any point in

time the state of the hidden units at the pre­
vious time step are used as additional input
in the same way that a child processing lan­

guage would use prior memories. A typical
architecture for a SRN is shown in Figure 2.

Figure 2. Typical architecture ofa sequential

connectionist model (dotted lines indicate
non-trainable units).

The hidden units output ta the output units

but also to the context units from where this
output is fed back into the hidden layers as
additional input. SRN's tend to be used for
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prediction tasks where the model is expect­

ed to output the next item it expects given
the elements it has seen previously. SRNs are

self-supervising models, rather than having
a teacher signal they work on the basis that

language users expect to hear similarities to
his or her own constructions in the speech of

others. Thus, SRNs predict what word will

be heard next in the input (what theywould
say next) and this is compared with the ac­

tual word in the input stream (what the oth­

er speaker actually says). If the prediction is
accurate then the network will alter its

weights to make that response more likely in

the future. Ifthe prediction is not confirmed
then the weights will be altered slightly to

make that response less likely.
A major distinction among sequential

models concerns whether or not a model al­

lows feedback from logically later to logical­

ly earlier levels ofprocessing. A disadvantage
of SRNs is that they do not allow feedback

from logically later to logically earlier levels

of processing. At any timeslot, an SRN can
only produce one output and the state of

that output is dependent on the state of the
network at that precise timeslot. Thus,

SRNs are only capable of predicting what
item might come next in the sequence, they

are not able to change their prediction sub­
sequently based on items that come later in

the input. An SRN might predict a word

ending marker after the input cat but could
not change its prediction to catapult if rath­

er than a word ending marker the letter awas

the next item in the input. In the field of
spoken word recognition, the TRACE mod­

el (McClelland & Elman, 1986) attempted
to deal with the temporal dimension of

speech by having many copies of the entire
network representing different points in

time. By using this large and implausible ar­

chitecture TRACE can match sets of pho­
nemes to words and can revise its decisions

in the light ofsubsequent context because it

has access to (copies of) the network at all
time stages (including previous time stages).
Thus, TRACE can change its prediction of
a word from cat to catalogue. It is, however,

uninruitive to have a copy of the network

available at each time step and SHORTLIST

(Norris, 1994) represented an adaptation of
TRACE, which only processed a shott list of

words which were likely to appear next in

any given context.
Elman (1990) trained a simple recurrent

network to discover word boundaries from
a concatenated stream of letters. Thus, EI­

man sought to investigate whether a net­

work using parallel processing could discov­
er the notion of"word", a sequential pattern.

He was interested in whether the concept of

words emerge from learning sequential pat­
terns of letters in which word boundaries
were not marked. The sequence of letters

was formed from a lexicon of 15 words us­

ing a sentence generation tool. Two hundred

sentences, varying in length from 4 to 9
words were created. The sentences were then

concatenated to form a string ofwords. The
words were then broken down into the let­

ters from which they were constructed. The
task for the network was to predict the next

letter. It was impossible for the network to

learn the sequence in the 10 presentations of
the data that it received (and indeed it does

not). It is characteristic ofthis type ofmodel

that during training the error on predicting
the next input does not decrease to any great
extent. However, while the error is relatively
high at the start ofa new word, as more let­

ters are presented to the network the RMS
error declines since the word becomes more
predictable (See Figure 3.). The network also

has high errors on the y when e is input as

part of they. .... because it has been exposed
to the highly frequent pattern the.

Elman did not intend this simulation to
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be treated as a model of word aequisition.

The simulation simply serves as a demon­

stration of the faet that there seems to be

information in the input that eould serve as

a eue to the boundaries of linguistie input

(sueh as word end), whieh ean be learned.

Saffran, Aslin and Newport (1996) found

that 8-month old infants eould learn transi­

tional properties (word boundaries) from

exposure to the input.

0.25

0.2

015

~
~ 01

0.05

w a
Target letter

Figute 3. The error between the target and

aetual output of the network for eaeh letter

of the word "whai'.

Two types of sequential models have been

used to investigate syntax. The first type of

model attempts to eomplete the more diffi­

eult task ofdiseovering the grammatical type

(and funetion) of eaeh word token (e.g. El­

man, 1990). The input to this first type of

model is a representation ofword tokens and

the output is the word token that the network

prediets is likely to follow that partieular in­

put. A successful network is able to learn that

word tokens of partieular grammatical types

are able to follow tokens ofsome grammati­

cal types but not others. The disadvantage of

this approaeh is that it uses smalllexieons and

can only test fragments ofgrammar. Howev­

er, models of this kind are able to simulate

data eolleeted from human partieipants on

grammatical ratings (Christiansen, 1999;
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Christiansen & Chater, 1999), complex

grarnmatical strueture (MaeDonald & Chris­

tiansen, 1999) and sentenee eomprehension

(Tabor,Juliano, &Tanenhaus, 1997). Elman

(1990) was also interested in whether it was

possible to learn syntaetie classes from word

order. He trained an SRN to diseover syntae­

tie classes from the order in whieh words ap­

peared in the input. Sentenees were generat­

ed from a lexicon of29 iterns. The sentenees

were formed using a grammar in whieh there

were subjeet noun/verb agreements, different

verb argument structures (i.e., intransitive,

transitive, optionally transitive) and subjeet

objeet relative clauses (allowing multiple em­

beddings with eomplex long-distanee de­

pendencies). Sentenees were formed by ran­

dornly seleeting a word that was appropriate

for a partieular slot in a sentence frame. A 10­
calist eoding scheme was employed in whieh

eaeh word was represented by an individual

eode. The coding did not indicate that any

word was from the same syntaetie category as

anotherword. The network's task was to pre­

diet the next word in the sequenee. The net­

work was trained on 6 complete repetitions of

the training set. The words were input one at

a time. For eaeh word there was a limited

number oflegitimate successors. The network

was expeeted to learn the frequency ofoceur­

rence ofeach of the possible suceessors. If the

network learned these frequencies then words

that are likely to oceur in similar slots might

be expected to be represented in a similar way

in the hidden units. A cluster analysis of the
way in which the words were represented in

the hidden units revealed that the network

had diseovered that there were several major

categories of word types. Two major catego­

ries, nouns and verbs, were found. The verb

category was further broken down into tran­

sitive, intransitive and optionally transitive.

The noun category was broken down into an­

imate and inanimate nouns. Thus, from word
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order alone the network learned that some

verbs need to be followed bya noun but oth­

ers do not. The network had no semantie rep­

resentations but the results indicate that an

important component of meaning seems to

be context (i.e. consistent patterns exist in

which certain words frequently co-occut in

particular sequences with some words, but

not with other words).

The second type ofmodel involves ttaining

a network on sentences in which grammati­

ca1 type is used as the input and the network

outputs a predietion of the grammatica1 type

that the next item is likely to come from (e.g.

Hanson & Kegl, 1987; Howells, 1988). To

test performance, the network is required to

assign the appropriate grammatica1 type to

the nextword. The advantage ofmodels such

as these is that they can be used with large

corpora of naturallanguage as the network

does not have to remember individual word

tokens but rather in which order the various

grammatica1 types in the input must appear

to form "grammatica1 sentences."

In English, the possessive [-s] morpheme is

always followed by a second noun but the

plural [-s] morpheme is rarely followed by a

second noun. Hayes, Murphy, Davey and

Smith (2003) developed a model to investi­

gate whether a SRN could learn that in Eng­

lish items from some syntactic categories fol­

low the possessive [-s] morpheme and items

from syntactic categories follow the regular

plural [-s] morpheme.!twas thought that this

faetor might be implicated in the experimen­

tal fmding that irregular plurals are inc1uded

in compounds more frequently that regular

plurals (Gordon, 1985). The hypothesis was

that the regular plural [-s] morpheme was

omitted from a noun when that noun was

followed bya second noun (as would be the

case in noun-noun compounds) because of

competition with the possessive [-s]. Irregu­

lar plurals do not end in [-s] and can therefore

be inc1uded before a second noun because

they do not compete with the possessive. In

earlier models, (Hayes et al, 2002) items in

the training set were not explicitly coded as

being representative of a particular syntactic

type (e.g. as being nouns or verbs). Instead,

learning about the distinct linguistic func­

tions that the different syntactic types per­

form emerged during training. However, a

disadvantage of these models was that it was

only possible to use a smalllexicon ofwords

because ofthe complexityofthe learning task.

This model was trained on a much larger

training set than the earlier models. This sim­

ulation sought to reproduce the behaviour of

an older child, with a much larger vocabulary;

who has knowledge, though perhaps not at a

metalinguistic level, ofthe different functions

that are performed by the different syntaetic

types.

The aim ofthis simulation was to investigate

whether the faet that the possessive [-s] mor­

pheme is always followed by a second noun but

the plural [-s] morpheme is rarely followed by

a second noun is sufficient to constrain com­

pound formation in English. A simple recur­

rent network (SRN) was utilised 50 that at any

point in time the state of the hidden units at

the previous time step were used as additional

input (Elman, 1990).Thus itwas expeeted that

the model would be able to learn sequential

mappings. The network was trained on a large

training set of real child directed speech in

which the frequencies with which the various

types ofmorphology occurredwere not manip­

ulated in any way. The syntactic type of each

wordwas used as the input to the network. The

frequency in which regular and irregular plu­

rals and possessives were inc1uded in me train­

ing set was determined by me frequency in

which they appeared in the child directed

speech mat was used as me input to the mod­

eI. Table 1 illusttates mat some iterns appear in

sequence with other items in the input (e.g.
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possessives are always followed by singular

nouns) but other items do not appear in se­

quence with other iterns (e.g. regular plurals are

notfollowed bysingular nouns). The perform­

ance of the network was investigated using a

syntactic type prediction task in which one of

three syntactic types was input (a possessive, a

regular plural or an irregular plural) and the

network predicred which syntactic type it ex­

pected to see next in the input stream. The

abilityofthe network to learn this taskwas test­

ed using the same task. The difference (RMS

error) between this predicted output and the

output for noun, verb, other and word ending

was calculated. It was predicted that the RMS

error would be high for all iterns after posses­

sives except nouns. Conversely it was predicr­

ed that there would be a high RMS error on

predieting a noun after a plural ofeither kind.

Training set and codingscheme

The exact composition of the training set is

shown in Table 2. Irregular and regular plu­

rals and possessives form less than 1% ofthe

input. Items coded as "others" included an­

ything that was not a noun or a verb (e.g.

adjectives, determiners, adverbs and prepo­

sitions). 2182 sentences, made up from

9999 words, from the Wells study from the

CHILDES corpora (MacWhinney & Snow,

1985) were concatenated and used as input.

A sentence ending marker was also included
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in the training set. The frequency with

which items from various syntactic catego­

ries followed irregular plurals, regular plurals

and possessives is shown in Table 1.

Possessives were only ever followed by singu­

lar nouns in the input. Regular and irregular

plurals were followed bya range of iterns but

never by a singular noun. Each item was en­

coded using a 7 bit vector. Three input units

encoded syntactic category (noun, verb, oth­

er) and two inputs encoded whether the item

was plural or not. Two input units encoded

the presence or absence of the [s] morpheme.

Thus for both regular plurals and possessives

the input units for noun and [s] morpheme

present would both be activated. A possessive

was disambiguated from a regular plural,

however, because the plural input unit was

"on" for a plural but "off" for a possessive. Ex­

amples ofhow items from different syntacric

categories were encoded is shown in Table 3.

Architecture

The architecture of the network is shown in

Figure 4. The network had 7 input units, 4

hidden units, 7 output unirs and 4 context

units. A simple recurrent architecture was

adopted so that at any point in time the state

of the hidden units at the previous time step

were used as additional input (Elman,

1990). The SRN was trained using a learn­

ing rate ofO.l and a momentum ofO.3.

Figure 4. Network

architecture

Output of Network's

+- prediction of
next syntactic type

Icontext units (4) I
I Input of syntactic

-+L -'. / Iyp, '" '""'''' ",m
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Task
In both the training and test phases, the net­

work was required to predict the next input.

(i.e. the target output was one tirne step be­
hind in the input).

Training
The network was trained on 10,000 repeti­

tions of the training set. This high number

of presentations of the input was necessary

because the training set was large and items
of particular interest i.e. possessives (0.39%

Table 1.Frequency with which items from various syntactic categories followed irregular plurals,

regular plurals and possessives (percentage frequency shown in brackets) in the training set.

Item following plural or possessive Irregular plurals{n=9) Regular

plurals{n =95) Possessives{n= 39)

Others 3 (33) 40 (42) 0

Sentence ending marker 0 30 (32) 0

Singular nouns 2 (22) 0 39 (100)

Verbs 1 (11) 24 (25) 0

Regular plurals 1 (11) 1(1) 0

Irregular plurals 2 (22) 0 0

Table 2 Composition of training set.

Item Number of tokens Cumulative Percentage of Cumulative

in training set total tokens in training set percentage

Irregular plurals 9 9 0.09 0.09

Possessives 39 48 0.39 0.48

Regular plurals 95 143 0.95 1.43

verbs 624 767 6 8

Sentence ending markers 1415 2182 14 22

Singular nouns 3014 5196 30 52

others 4803 9999 48 100

Table 3. Examples of coding scheme.

Syntactic category Type of noun S present or not

Item noun verb other singular plural S No S

rats YES NO NO NO YES YES NO

mice YES NO NO NO YES NO YES

rat's YES NO NO YES NO YES NO

chaser YES NO NO YES NO NO YES

the NO NO YES NO NO NO NO

chase NO YES NO NO NO NO NO

Sentence ending marker NO NO NO NO NO NO NO
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Discussion
This neural network was trained using natu­
ralistic child directed speech. Gaining this ad-

Figure 5. Error on producing nouns, verbs,

other items and word endings after posses­
sives, regular plurals and irregular plurals.

Figure 5 illustrates that at a descriptive level

the error on producing a singular noun after
a possessive was about half as high as the er­

ror on producing a singular noun after a plu­
ral of either type1• The network also learnt

that the syntactic categories that make up oth­
er items and sentence-ending markers can
follow plurals but not possessives. The net­
work produced a high rate oferror when the

target output after a plural noun was a verb,
despite the fact that in the input verbs fol­

lowed regular plurals (25% of the time that

regular plurals occurred) and irregular plurals
(11 % of the time that irregular plurals oc­
curred). However, the training set contained

very few verbs (6.24 % of the training set).
Given that verbs were so underrepresemed in

the input it was unlikely that they would be
predieted as the next item in a next word pre­
diction task to any great extem.

word endingvero other
syntactic category

noun

• output after possessive Cl output after regular plurals
o output after Irregular plurals

rms error
0.8

0.7

0.6

05

0.4

0.3

0.2

0.1

o

Thus, for example, in the test pattern posses­
sivefollowed bysingular noun the code forpos­
sessive noun was input and the target output
was singular noun. However the network

might not output singular noun. The actual

output and the target output were compared
and an error figure was calculated based on
the difference between the TwO output
weight values.

TestPhase

After training, the network was presented
with the following sequences:

• possessive followed by singular noun
• possessive followed by verb

• possessive followed by other
• possessive followed by sentence ending.

• Regular plural followed by singular noun
• regular plural followed by verb

• regular plural followed by other
• regular plural followed by sentence end-

mg.

• Irregular plural followed by singular noun
• irregular plural followed by verb
• irregular plural followed by other

• irregular plural followed bysemence ending.

of the input), regular plurals (0.95% of the
input) and irregular plutals (0.09% of the

~nput) formed such a low proportion of the
mput.

Results

The error between the actual output and the
target output was recorded after the network

was presented with the test sequences. Many
runs of the simulation were carried out but

each produced almost identical results.

I It was not possible ta carry out a statistical test
on the error rates shown in Figure 5 as me figu­
res shown relate ta me output of 1 test rather
man ta me output of several tests.
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vantage, however, meant that the syntactic

type ofeach token rather than individual to­

kens were used as input to the network. This

means that syntactic type did not emerge dur­

ing training as was the case for the mode!s
with smaller lexicons which were reporred in
Hayes et al (2002). However, this mode! of­

fers an insight into how learning rnight take
place when the frequencies of items in the

input are more accurate!y represented. The

syntactic category prediction task showed that
the error on producing a singular noun after
a plural, of either kind, was twice as high as

the error on producing a singular noun after

a possessive. This suggests that the network
easily learned the sequence possessive [-s}­
noun. The network also learnt that the syntac­
tic categories that make up other items and

sentence-ending markers can follow plurals

but not possessives. This learning seems to
have occurred because these items appeared in

consistent patterns in the input despite hav­
ing very low frequencies in the messy context

ofchild direeted speech. Regular plurals and
possessives were disambiguated in the input

by the faet that the plural input unit was on

in the case of a regular plural but off in the
case of a possessive and from the patterns in

which they occurred in the input. Thus it
seems that the network was able to learn that

the noun -morpheme [-s} pattern occurred in
different patterns when it was plural to when

it was singular. Some items follow one pattern
(i.e. a second noun follows the noun [-s) mor­
pheme pattern when it is singular but not
when it is plural) while other iterns follow the

reverse pattern (i.e. word ending markers and

other items follow the pattern noun- [-s) mor­
phemewhen it is plural but not singular). That

a neural network mode! with no explicit

grammatical structure was able ta learn these
linguistic patterns is further support for the
idea that there is sufficient evidence in the

input to constrain learning that a second

noun is not included after a plural because the

pattern noun-morpheme [-s}- noun is used to

denote possession not plurality.

5. DEVELOPMENTAL MODELS

Introduction

Connectionist models are also able to suggest
mechanisms by which language learners

might acquire particular linguistic functions

by exposure to the linguistic input. The dual
mechanism model does not need ta propose

learning mechanisms because theyargue that
linguistic constraints are innate. However, if
a connectionist model without built in con­
straints is able ta offer an explanation ofhow

learning rnight proceed then the assumption

that this knowledge is innate is weakened.

Probabilistic !earning oflanguage

Seidenberg and McDonald (1999) posit a

mechanism by which they argue language
learners rnight acquire linguistic constraints

(rules). Seidenberg and McDonald built upon
the findings of sequential models, where

grammaticallearning emerges from exposure
ta language, ta develop a probabilistic ap­

proach ta language acquisition and process­

ing. They posit that knowing a language is not
equated with knowing grarnmatical rules. In­
stead, theyargue that knowledge oflanguage
develops as children attempt to speak (pro­
duction) and understand (comprehension)

the speech they hear. To test these ideas, Allan

and Seidenberg (1999) developed a connec­
tionist mode! that was trained on two tasks.

The first was ta compute the semantics of a
series of words (comprehension) the second
was to compute a series ofwords (production)

having been given semantic patterns. The net­
work was then presented with a series of test
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sentences and was required to identifywheth­
er these test sentences were grammatical or
not (i.e. did the test sentences conform to the

grammar that the network had been exposed

to during training). The architecrure of the
mode! is shown in Figure 6.

G)'~~~
Figure 6. Architecrure of AIlan & Seiden­
berg's 1999 mode!

The training set consisted of20 examples of

10 types ofsentences (i.e. sentences with dif­
ferent grammatical structures) from a vocab­

ulary of97 words. Each word was represent­
ed locally in the network. This meant that

every individual word was encoded using a
coding that was independent of the coding
used for all other iterns. The semantics ofeach

word were represented as the state ofa space
made up of297 units. During training when
the network was required to perform the

comprehension task the units representing

each word in the sentence were activated in
sequence. The task of the network was to
compute the correct semantic representation

ofeach word in the sequence. On the produc­

tion task the mode! was required to produce
the correct localist code for each word in the

sentence having been given the semantics of
the words in that sentence. The network was

trained by interleaving form to meaning and

meaning to form tasks. Thus, the network

was simply trained on exposure to examples
and weights became adjusted towards struc­
tures to which the network had been exposed

and weights became adjusted away from
structures that had not been exemplified in
the input. During the test phase, words mak­

ing up a sentence were supplied to the net­
work and the semantics ofthese words would
be activated (via the form to meaning connec-
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tions, see Figure 6.). This semantic pattem
would then be translated back into words (via

the meaning to form connections, see Figure
6.) and if the form ofthe translated sentences

were unlike the pattems ofwords (sentences)

used in the training set then a large error
would be produced. However, if the translat­
ed sentences were similar in form to sentenc­

es in the training set then a lower errorwould

be produced.
Allan and Seidenberg's (1999) mode! was

successful at learning which structures were
grammatical (i.e., similar to sentences seen

previously) and led Haskell, Macdonald and
Seidenberg, (2003) to conclude that for in­

stance the treatrnent ofplurals in compounds
in English might be learnt in a similar man­

ner. This sterns from the series ofexperiments
that have demonstrated that native English

speakers include irregular plurals in com­
pounds more frequently than they include
regular plurals (e.g. Gordon, 1985). Haskell
et al did not build a network to describe how

the treatment of plurals in compounds is

learnt but argued that weights would be ad­
justed towards plurals being omitted from

compounds and away from plurals being in­
cluded in compounds. Thus, plurals would
become less like!y to be included in com­

pounds but could be in certain circumstanc­
es (if that item had been included in the plu­

ral form frequently in the input) and particu­
larly early in training (before the weights set­
tled down). The significance of this mode! is
that it countersthe argument that children

cannot leam to include irregular plurals in

compounds (which they did in Gordon's
(1985) experiment) from the input they re­
ceive because they do not hear adults includ­

ing plurals of either type in compounds.
Haskell et al, applying this probabilistic learn­

ingviewpoint to compounding, argue that in
the vast majority of instances children will

have heard plurals used when plural seman-
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ties are required and thus will have developed

a language system based on this faet. Theywill

experience far fewer examples ofwhere plurals

are omitted (i.e. in compounds) but gradual­

ly theywilllearn this exception to the general

way that plurals are treated in English.

Connectionist model investigatingfactors
affecting the treatmmt 0/plurals in
compounds

Although they discuss how a connectionist

model ofthe treatment ofplural morphology

in compounds using probabilistic constraints

might be developed, Haskell et al (2003) do

not build such a model. Instead they build a

connectionist model to investigate whether

the phonologica1 structure ofa word indicates

whether this item is permissible before a sec­

ond noun. This is to investigate their hypoth­

esis that due to a phonetic constraint words

that sound like regular plurals do not appear

before a second noun. They hypothesised that

adjeetives (i.e. words that may occur before a

second noun) have a particular phonetic

structure (in particular they tend not to sound

like regular plurals) that is not present in

words from other syntactic categories. The

network consisted of26 input units that en­

coded phonetic features. The hidden layer

had 20 units and the output layer had one

unit, adjective or not. The frequency with

which an item was presented to the network

was representative of its frequency in the

Brown Corpus produced by the Penn Tree­

bank project (University of Pennsylvania,

Philadelphia. PA). The training set was pre­

sented for 50 iterations. Over 3 test runs the

network on average was able to correctly iden­

tifY 75% ofthe adjectives it was trained on as

being from this syntactic category and 84%

ofitems as being from other categories i.e. not

adjectives. On testing with novel input, the

network classwed 70 % ofpreviously unseen

adjectives correctly and 79% of non-adjec­

tives correctly. Thus, Haskell et al concluded

that phoneties play a significant role in learn­

ing syntactic categories (Kelly (1992); Mor­

gan (1996)).

5. CONCLUSIONS

The challenge for supervised neural net mod­

els ofmorpho-syntaxhas been to demonstrate

that language learning that appears to entail a

data base of rules and exceptions can be sim­

ulated without the need for these struetures to

be present. Several connectionist models of

morpho-syntax have met this challenge. Both

statie and sequential models ofthe acquisition

ofmorpho-syntax have been developed. That

static conneetionist models have been able to

simulate the development ofboth verbal and

nominal morphology has raised many ques­

tions of the dual mechanism model of mor­

phologica1 processing (Pinker, 1999). Se­

quential connectionist models have consider­

ably aided our understanding of many areas

of morpho-syntax including recently the

treatment of plural nouns in compound

words. The models discussed here and many

other connectionist models have had a con­

siderable effect on our understanding of lan­

guage acquisition. Ifnothing else connection­

ist models have provided a test-bed for the

learnability of linguistic properties previous­

ly assumed to be innate (Elman, Bates, John­

son, Karmiloff-Smith, Parisi and Plunken,

(1996), Christiansen and Chater, 1999).
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KIELEN OMAKSUMINEN KONNEKTIONISTIEN MUKAAN: MORFOLOGIAN
PROSESSOINNIN MALLIT
Jenny Hayes, Department of Psychology, University of Hertfordshire, U.K.

Kielen omaksuminen vaikuttaa perustuvan sääntöjen ja poikkeustapausten oppimiseen.

Morfosyntaksin prosessointia mallintavia, ohjattuun oppimiseen perustuvien neuroverk­

komallien haaste on ollut osoittaa, että kielen omaksumista voidaan simuloida ilman

tällaisia rakenteita. Tässä katsausartikkelissa tarkastellaan morfosyntaksin konnektionisti­

sia malleja, joiden avulla on pyritty vastaamaan tähän haasteeseen. Artikkelissa kuvataan

aluksi konnektionististen mallien toimintaperiaatteita ja sen jälkeen selitetään kuinka

staattiset ja sekventiaaliset kielen omaksumisen malleja on kehitetty. Mallien kykyä

simuloida sekä verbien että substantiivien omaksumista tarkastellaan suhteessa siihen,

miten nämä tulokset kyseenalaistavat morfologisen prosessoinnin "kaksoismekanismi"­

mallit (Pinker, 1999). Sekventiaalisten konnektionististen mallien osuutta yhdyssanoissa

esiintyvien monikollisten substantiivien käsittelyn selittämisessä tarkastellaan yksityis­

kohtaisesti. Lopuksi esitetään katsaus morfosyntaksin oppimisen kehityksellisiin mallei­

hin.

Avainsanat: konnektionistinen mallintaminen, morfosyntaksi, kielen omaksuminen,

ohjattuun oppimiseen perustuvat neuroverkkomallit




