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Abstract 

In admixed populations originating from different base breeds, such as the Nordic Red Dairy Cattle, 

identity by state of haplotypes instead of single nucleotide polymorphisms (SNP) is a better surrogate 
for identity by descent. Therefore, haplotypes are expected to be more useful in recovering genetic 

relationships among animals and linkage disequilibrium between markers and quantitative trait loci 

(QTL). The objective of this study was to improve the prediction accuracy in genomic evaluations by 
the use of haplotypes of short chromosomal segments. 

In the first step, around 38,000 SNPs from a 50K chip were simultaneously scanned for QTL 

signals with BayesB. Based on these results, the SNPs with the strongest QTL signals were then pre-

selected and haplotype blocks were constructed around these. In the second step, we estimated the 
relative variances for the pre-selected haplotypes with BayesA. In the final step, mixed model 

equations of the evaluation model were solved to estimate haplotype effects. Here, a pre-defined 

proportion of the genetic variance was assigned to a pedigree-based animal effect and the rest to 
haplotypes. The accuracies of several combinations for the number and the length of haplotype blocks 

were assessed by calculation of genome-enhanced breeding values and validation test reliabilities (R
2
).  

For three production traits (milk, protein, fat) and fertility, the highest R
2
 observed were 0.48, 

0.41, 0.42 and 0.33, respectively. For milk and protein, we observed an improvement over G-BLUP of 

3 and 1 percentage points, respectively. For fat and fertility, the highest R
2 

were the same as for 

GBLUP. Further analysis using only single SNPs instead of haplotype blocks yielded similar results. 

This may indicate a need to choose an alternative approach to pre-select haplotype blocks. 
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Introduction 

In genomic evaluations, DNA information is exploited to improve reliability of predictions for genetic 

merit in e.g. breeding programmes of livestock. One of the main benefits from using DNA information 

is that it becomes available for the evaluation of individual animals earlier in life than most traits can 
be measured. As a consequence, the need to wait for results from cost-intensive and lengthy progeny 

testing decreases. 

In their pioneering study on genomic selection, Meuwissen et al. (2001) originally formulated 
their prediction models BayesA and BayesB in terms of haplotype effects to be estimated. Haplotypes 

are chromosomes, or chromosome segments, which are jointly inherited from parent to offspring. Yet, 

high-throughput genotyping based on single nucleotide polymorphism (SNP) arrays has afterwards 

promoted the development and the implementation of genetic evaluations models in terms of bi-allelic 
markers such as SNPs. Whereas SNP-based genomic evaluations have shown outstanding 

performance in genetically homogenous populations such as Holstein dairy cattle, the application to 

heterogeneous populations originating from various base breeds such as Nordic Red dairy cattle has 
been less successful. 

The main motivation to use haplotype markers in admixed populations is that identity-by-state 

of haplotypes instead of SNPs is expected to be a better surrogate for identity-by-descent of a 
chromosomal segment. This is because joint inheritance of markers in different lineages of the 

population is reflected more accurately in haplotypes. Consequently, linkage disequilibrium (LD) with 

quantitative trait loci (QTL) is expected to be more consistent for haplotypes than for SNPs. Further, 

many genomic prediction models try to improve estimates for genetic relationships between 
individuals by using genome-based relationships rather than relationships using pedigree information. 

In genetically heterogeneous populations, however, SNPs are not able to trace relationships well 

enough. 
In this study, we aimed at improving genomic prediction in Nordic Red dairy cattle by 

exploiting haplotype information. First, the genome was scanned to detect the chromosomal segments 

with the strongest QTL signals. To improve power to estimate genetic effects and to reduce 
computational demands, only chromosomal segments harboring the strongest QTL signals were used 

in the following prediction of genome-enhanced breeding values. We considered different alternatives 

for the number of segments and for the length of the segments and compared validation results with 

two SNP-based prediction methods. We evaluated prediction of three production traits and fertility 
using real Nordic Red dairy cattle data. 

Materials and Methods 

The data included phenotype, genotype and pedigree information for Nordic Red dairy cattle (RDC) 
bulls born between 1971 and 2008. The bulls were split into a training and a validation set by birth 

year: bulls born between 1971 and 2005 were defined as training or reference bulls and bulls born 

between 2006 and 2008 as validation or candidate bulls. 

Marker data and haplotype phasing 

Genotypes were obtained from the Illumina Bovine SNP50 Bead Chip (Illumina, San Diego, CA). 

After application of exclusion criteria, 38,194 SNP markers on the 29 bovine autosomes were 

available for further analysis. The software BEAGLE v3.3 (Browning and Browning 2009) was used 
to impute missing genotypes and to phase the SNP data. 

Phenotype data 

The phenotype data were obtained from Nordic genetic evaluations for RDC. The data included 

deregressed proofs (DRP) complemented by effective daughter contributions (EDC). The deregressed 
proofs were based on standardized estimated breeding values for index traits. The index traits and the 

standardization procedure are described in detail by Nordic Cattle Genetic Evaluation (2013). Three 
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production traits (milk, protein and fat yield) and fertility were selected for this study and a summary 

for these traits is given in Table 1. 

Table 1. Summary of phenotype data (deregressed proofs DRP and effective daughter contributions 
EDC) for the four index traits analyzed.  DRP are based on national breeding value indices which are 

standardized such that cows born 2008-10 have a mean of 100 and bulls born 1997-98 have a standard 

deviation of 10.  

DRP EDC 

Trait Group N Mean SD Range Mean SD Range 

Milk Reference 4250 89.9 12.1 44.9-128.1 281 207 28-916

Candidate 516 102.7 9.5 72.5-126.4 126 60 19-295
Protein Reference 4250 86.7 13.7 32.1-129.4 

(a) 
Candidate 516 103.9 9.1 77.1-133.6 

Fat Reference 4250 90.3 11.7 37.6-130.0 

Candidate 516 103.5 8.5 76.8-129.5 
Fertility Reference 4422 100.3 13.5 19.7-151.7 860 1807 26-9771

Candidate 551 98.3 20.4 -6.9-195.2 170 107 25- 519

(a) EDCs were identical for the three production traits (milk, protein and fat).

Haplotype-assisted genomic prediction 

The approach for haplotype-assisted genomic prediction can be summarized as follows: 

1. All SNPs were simultaneously screened for QTL signals.

2. A certain number of chromosomal segments ("blocks") of pre-defined length containing the
SNPs with the strongest QTL signals were pre-selected for further analysis.

3. The pre-selected blocks were jointly evaluated in a multi-locus model to obtain block-specific

variances of haplotype effects.

4. In the genomic evaluation model, the effects of haplotypes were re-estimated, using the
variance estimates obtained in the previous step and including a pedigree-based polygenic

term.

5. Genome-enhanced breeding values (GEBV) were then calculated for the candidate bulls and
validated using DRP of candidate bulls.

Screening for QTL signals 

The DRP were modeled by generalized BayesB (Strandén et al. 2011) with model equation 

Here,   is the vector of   DRP observations,   the common intercept,   the   genotype 

matrix holding codes 0, 1, and 2 for the three possible genotypes at each of  SNP markers,  the 

vector of   additive marker effects, and   the vector of  residuals. 

The prior distribution for the common intercept  was uniform on the entire real line, i.e. 

 . The marker effects  were assigned mutually independent prior distributions, 
which were specified by 

Here,   
      

  and  . In our analysis, we set degrees of freedom  and proportion 

of markers with zero effect  , i.e., 10% of the SNP markers were assumed to have non-zero 

effect. The prior distribution for the vector of residuals was multivariate normal with  , 
where     

    . The weight matrix  was a diagonal matrix with the inverses of EDC as diagonal 

elements. 

The prior distribution for a marker effect differed from the one in original BayesB 
(Meuwissen et al. 2001): under original BayesB, the unconditional prior of a marker effect, when 

different from 0, can be represented as a non-standardized centered Student's t-distribution with fixed 
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dispersion parameter, whereas in generalized BayesB, the dispersion parameter   
  of the Student's t-

distribution was random.  
The model parameters were estimated using Markov chain Monte Carlo (MCMC) 

approximation with 200,000 samples, of which the first 20,000 were discarded as burn-in. 

Pre-selection and building of haplotype blocks 

The absolute values of the posterior means of marker effects (  ) were used to rank QTL signals 

and to pre-select haplotype blocks for further analysis. The first haplotype block was chosen 

including the SNP with largest  (denote its index   ). The SNPs with indices 

formed the first haplotype block in the case that all these SNPs were on the same chromosome. 
Otherwise, i.e. if not enough flanking markers were available at the start or the end of a chromosome, 

the indices were shifted forward or backward by one or two positions such that the five SNPs were 

chosen from the same chromosome. The following      haplotype blocks were chosen likewise, but 

with the restriction that haplotype blocks were allowed to share one SNP at most.  The values for   
were 1 and 2, thus forming haplotype blocks of length 3 and 5 SNPs, respectively.  

Estimation of haplotype block variances 

Once the haplotype blocks had been pre-selected for further analysis, the variance of effects in each 

haplotype block was estimated using BayesA (Meuwissen et al. 2001) with block-specific variances. 
Here, the regression equation for the DRP was 

where the same prior distributions as above were assumed for the common intercept   and the vector 

of residuals  . Denoting the number of distinct haplotypes in haplotype block   with    and the indices 

of these haplotypes with         
       had  columns and  rows. Its elements were 

the numbers of copies (0, 1 or 2) of a given haplotype for an individual. In the case that haplotype 

blocks comprised five adjacent SNPs, the upper limit for  was   , and in the case of three 

SNPs  . 

A normal distribution with mean 0 and variance was assigned as to each of the 

haplotype effects in block  , i.e. they shared a common variance. The prior distribution 

for was a scaled inverse-chi-square distribution with 4.01 degrees of freedom. Two separate 

MCMC estimation runs were conducted for each trait by setting the expected value of  to 0.01 and 

alternatively to 0.1. The lengths of the MCMC chains were 200,000 iterations, of which the first 

20,000 were discarded as burn-in. 

Evaluation model 

The final evaluation model for the DRP was 

for which solutions were obtained from mixed-model equations (MME). The only fixed effect was the 

common intercept  . The random term  was a vector of animal effects with mean 0 and variance-

covariance  , where   was fixed to a value in      ,  an estimate for the additive genetic 

variance and  the pedigree-based relationship matrix. The random residuals were assumed to have 

variance-covariance  , where the weight matrix   was defined as above. Both estimates  and 
had been obtained using a standard animal model without any genomic component. 

The random haplotype effects  shared variance  . Here,    
   is 

the posterior mean of  , estimated as described in the previous step. Further,    was a constant 

ensuring that a proportion   of the additive genetic variance was assigned to haplotype blocks. It 
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was calculated as , with   being  centered to have column means 0. 

Validation of genomic prediction 

Genome-enhanced breeding values were calculated using the equation 

where    and are the MME solutions obtained from the evaluation model. The model was 
validated by regressing DRP on GEBV of candidate bulls with observations weighted by EDC. The 

slope coefficient of this regression, , was used as an estimate for bias of GEBV. Following 

Mäntysaari et al. (2010), the coefficient of determination  was scaled to obtain an estimate 

for the validation reliability according to                
    , where                  with 

. Here, the estimates for trait heritability  were the values used in Nordic genetic 

evaluations: 0.39 for the three production traits and 0.04 for fertility. The resulting scaling factor 

was 0.92 for the production traits and 0.57 for fertility. 

Genomic prediction with pre-selected SNPs 

Instead of using haplotype markers as described above, GEBV were also obtained using a limited 
number of pre-selected SNP markers. Here, we used the results from the QTL screen described above 

to pre-select the SNPs with largest effects. The subsequent procedures (estimation of SNP instead of 

haplotype variances, the evaluation and validation) were altered to accommodate SNP markers. 

Genomic prediction with GBLUP 

GEBV were also calculated with SNP-based GBLUP. Here, a weighted mean of the pedigree-based 

relationship matrix   and the genome-based relationship matrix   was used instead of a solely 

genome-based relationship matrix (VanRaden 2008). Specifically, the variance-covariance matrix for 

the polygenic effects was calculated as               . The genome-based relationship matrix 

was  , where  had been centered to have column means 0 

and  was the frequency of the second allele at SNP  . 

Results and Discussion 

Table 2 shows validation results for GEBV of candidate bulls for seven models (a-g). The number of 

haplotype or single SNP markers was either 1500 (a-c) or 750 (d-f), all 38,194 SNP markers were used 

in GBLUP (g). For the haplotype-based methods, results for haplotype segments of either 5 adjacent 

SNPs (a, d) or 3 adjacent SNPs (b, e) are reported. The models a-f were evaluated for  
  , but only the results from  which yielded highest validation reliability 

are reported.  In the GBLUP model, the polygenic weight was assumed constant 0.10. 

For milk yield evaluated with haplotype models, highest  was 0.48 (models a, e) and, thus, 

higher than    for GBLUP (0.45). However,  was also 0.48 for the model with 1500 single SNPs 
(model c). For protein yield, the model with 1500 haplotype blocks of size 5 yielded highest 

   However, GBLUP and the model with 1500 single SNP markers performed almost as well 

(        . For fat yield, of all haplotype models were below 0.43, the value yielded by the 

model with 1500 single SNPs and GBLUP. In the case of fertility, highest  with a value of 0.33 was 
yielded by the model with 1500 haplotype blocks of size 3. To summarize, no consistent advantage 

over SNP-based models or GBLUP was observed for  as yielded by haplotype-based models. In 

most cases, it was beneficial with respect to  to use 1500 instead of 750 markers in haplotype and 

single SNP models. The results gave no clear indication if it would be beneficial to use haplotype 
blocks with 3 or 5 adjacent SNPs. 

With respect to the bias of GEBV (   , the haplotype-based models and the models using a 

limited number of single SNP markers yielded better results, i.e. values closer to 1, than GBLUP. For 
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the proportion of genetic variance assigned to pedigree ( ), a clear trend was observed, as  generally 

increased, when the number of markers used was reduced from 1500 to 750. 

Table 2: Validation results for GEBV of candidate bulls: validation reliability  , bias of GEBV 

 , proportion of genetic variance assigned to pedigree ( ). 

Milk Protein Fat Fertility 

Model 

a.1500Hap5SNP 0.48 0.94 0.4 0.41 0.86 0.4 0.41 0.81 0.4 0.31 0.82 0.3 
b.1500Hap3SNP 0.47 0.95 0.6 0.40 0.88 0.6 0.42 0.82 0.5 0.33 0.84 0.4 

c.1500SingleSNP 0.48 0.93 0.8 0.40 0.84 0.8 0.43 0.82 0.8 0.29 0.82 0.8 

d.750Hap5SNP 0.45 0.94 0.5 0.36 0.83 0.6 0.38 0.77 0.4 0.28 0.78 0.5 

e.750Hap3SNP 0.48 0.92 0.6 0.39 0.87 0.7 0.41 0.83 0.7 0.29 0.84 0.7 
f.750SingleSNP 0.46 0.88 0.8 0.36 0.86 0.9 0.41 0.83 0.9 0.29 0.78 0.8 

g.GBLUP 0.45 0.79 0.1 0.40 0.71 0.1 0.43 0.72 0.1 0.30 0.72 0.1 

Conclusions 

According to our results, the haplotype-based method used in this study did not consistently improve 

genomic prediction when compared to single SNP-based methods or GBLUP. One reason for this 

could be that the procedure involved a pre-selection step, based on a BayesB-type analysis that 
actually exploited SNP information and not haplotypes. The QTL signals coming up in this part of the 

analysis may not be representative for QTL-haplotype associations, which the following steps of the 

method used in this study aim to exploit. In other words, effects of important QTL may be missing in 
the GEBV predicted by haplotype effects, because a “bad” set of chromosomal regions was pre-

selected. Therefore, the haplotype-based method may be improved by pre-selection based on screening 

the genome for QTL-haplotype associations instead of QTL-SNP associations.  
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