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Abstract: 
The  aim  of  this  simulation  study  was  to  compare  the  accuracy  and  bias  of  different  inbreeding  (F)  
estimators exploiting dense panels of diallelic markers and pedigree information. All genotype 
simulations were started by generating an ancestral population at mutation-drift equilibrium 
considering an effective size of 1000 and a mutation rate ( ) of 5.10-4. Two types of subpopulation 
were derived from the ancestral population for 10 discrete generations. They differed by the level of 
selection applied both on males and females: no selection or a structure close to a breeding program 
with selection of the best 40 males and 500 females on EBV with accuracy of 0.85 and 0.71, 
respectively, on a trait with heritability of 0.3. Marker panels were made up of 36 000 biallelic 
markers (18 per cM) and were available for animals in the last 4 generations. Pedigrees were recorded 
on the last 8 generations. For each scenario, 30 replicates were carried out. Analysed estimators were 
the correlation (VR1) and regression (VR3) estimators described to build the genomic relationship 
matrix by VanRaden in 2008. Other estimators included the weighted corrected similarity (WCS) 
estimator published by Ritland in 1996 and a modified WCS estimator accounting for pedigree 
information (WPCS). Pedigree-based inbreeding (PED) was also estimated using exhaustive pedigree 
information. Inbreeding estimates were correlated and regressed to the true simulated genomic F 
values to assess the precision and bias of estimators, respectively. Main results show that use of dense 
marker information improves the estimation of F, whatever the scenario. The accuracy of F estimates 
and the bias were increased in presence of selection, except for PED. Across scenarios, VR3, WCS 
and WPCS were the most correlated with true F values. In the situation where pedigree was 
exhaustive,  VR3  performed  as  well  as  WCS and  WPCS but  had  a  larger  variability  over  replicates.  
Although less biased on average, VR1 was less accurate than other estimators especially when allele 
frequencies were not properly defined. Accounting for pedigree information into WCS did not 
increase its estimation accuracy and did not reduce bias in the tested scenarios. Finally, error in 
estimating inbreeding trends over time in selected populations was greater for some marker-based 
estimators (VR3, VR1) than PED estimator. WCS and WPCS rendered the most accurate estimations 
of inbreeding trends. Thus, results indicate that WCS, which can be also used with multiallelic 
markers, is a promising estimator both to build the genomic relationship matrix for genomic 
evaluations and to better assess genetic diversity in selected populations. 
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Introduction 
Following recent advances of high-throughput genotyping technologies, the breeding industry has 

been largely adopting genetic markers for selection purposes. Based on the use of dense marker panels, 
genomic selection offers promising opportunities to improve both rates of genetic gain using genomically 
enhanced evaluations (Schaeffer, 2006) and the management of genetic diversity of livestock populations 
(Daetwyler et al., 2007). Compared to conventional BLUP evaluations, accounting for genomic information 
was shown to improve the accuracy of estimated breeding values because it directly exploits realized instead 
of expected inbreeding and pairwise relationship coefficients. As a consequence, it allows estimating the 
mendelian sampling term for each individual, even early in life and without any own performance. Hence, 
genomic selection makes it possible to reduce inbreeding rates due to increased emphasis on own rather than 
family information when making selection decisions (Daetwyler et al., 2007). However, accurate genomic 
prediction and careful monitoring of genetic resources will be efficient provided accurate estimators of 
inbreeding coefficients (F). Most marker-based estimators were conceived to be applied with sparse marker 
maps, in which markers were assumed to be independent, and with unselected and large populations in 
which existing levels of inbreeding could be ignored. Violation of both assumptions is obvious when 
estimating inbreeding in highly selected populations using dense marker maps.  

The objective of this study was to assess the performance of different inbreeding estimators for 
selected and unselected populations using simulated data. A marker-based estimator accounting for pedigree 
information was also derived and compared to existing pedigree- and marker-based estimators.  

Material and Methods 

Description of simulated data 
Performance of inbreeding estimators was assessed based on datasets simulated with QMSim 

software (Sargolzaei and Schenkel, 2009). Two different population structures were simulated and differed 
by the occurrence of selection. To simulate genotypic data with realistic linkage disequilibrium (LD) 
structures, both populations were derived from a common ancestral population at mutation-drift equilibrium 
(MDE). This population had an effective size of 1000 individuals and was simulated by randomly mating 
500 males and 500 females for 5000 discrete generations. Two offspring were produced per mating. In 
generation 5000, individuals were considered as base founders for deriving the 2 populations used for 
analyses. Each subpopulation diverged independently for 10 generations and all genotypes, phenotypes and 
pedigrees were recorded for the last 8 generations.  
In the first subpopulation, all demographic and reproductive parameters remained identical to the ones used 
in the ancestral population to generate a panmictic and unselected population at MDE. The second 
subpopulation was simulated to mimic a strongly selected population on a trait with heritability of 0.3. 
Therefore, the best 40 males and 500 females were kept for reproduction based on estimated breeding values 
whose accuracies were set to 0.85 and 0.70 for males and females, respectively. To make selection effective 
on the female side, the number of females was increased by distorting the proportion of born female calves to 
66%, thus avoiding increasing the population size.  

Individuals had diploid genomes comprising twenty 1 M-long chromosomes, each bearing 100 
quantitative trait loci (QTL) with 2 equifrequent alleles in the first ancestral generation. A mutation rate of 
2.5 10-5 per haploid site affected QTL so that new alleles could emerge during the simulation. QTL allelic 
effects were sampled from a gamma distribution with scale and shape parameters equal to 5.40 and 0.42, 
respectively (Hayes and Goddard, 2001). Neither dominance nor epistatic effects were simulated. QTL 
effects explained 75% of the genetic variance of the trait, the other 25% being attributable to polygenes. 
Each chromosome was also bearing 4000 evenly spaced markers with 2 equifrequent alleles in the first 
ancestral generations. In the first ancestral generation, all alleles were tagged with a unique label and 
transmission of ancestral alleles was followed over generations. A mutation rate of 5.10-4 per  haploid  site  
was applied to marker loci and kept constant over generations. When mutated, a new label was created to 
clearly distinguish identical by state (IBS) and identical by descent (IBD) alleles. The SNP allele value was 
then sampled from a Bernoulli distribution with probability 0.5. Hence, mutation was not recurrent. A panel 
of 36 000 markers was constituted by sampling at random among loci with minor allele frequencies (MAF) 
higher than 5%. Recombination was modelled with Haldane´s mapping function, assuming a mean number 
of 1 crossing-over per M and no interference. 

Inbreeding coefficient estimators 
Considering a single point in the genome, inbreeding can be defined as the probability that the two 

homologous alleles within an individual are IBD with respect to a defined based population. Considering the 
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genome as a whole, the achieved inbreeding coefficient of an individual is the proportion of its genome 
which is IBD. Variation in homozygosity by descent (HBD) depends then both on pedigree and the extent to 
which alleles at different loci are jointly IBD (Hill and Weir, 2011). In this study, true F coefficients were 
directly computed by counting the genome-wide (GW) proportion of HBD loci over the 80 000 simulated 
markers. This was facilitated by the use of unique labels defined for each ancestral allele. To be comparable 
in magnitude with other inbreeding estimates, true coefficients were expressed relative to the mean HBD of 
the base population comprising individuals recorded as founders in the pedigree file using conventional 
change of base population (Powell et al., 2010). 

Pedigree-based estimator. Pedigree-based F coefficients (Fped) were estimated with Relax2 (Strandén and 
Vuori, 2006) using algorithm by Meuwissen and Luo (1992) and exhaustive pedigree information over the 
last 8 generations.  

Regression of genomic over pedigree-based coefficients. VanRaden (2008) proposed an estimator based on 
the linear regression of marker genotype sharing over the pedigree-based relationship matrix (A) adjusting 
for the mean homozygosity of the population: 
MM' = g011' + g1A + E,  where g0 and g1 are the intercept and slope of the regression model, respectively. 
Matrix E includes differences of true from expected fractions of DNA in common plus measurement error. 
Then, the genomic relationship matrix can be obtained by reversing the calculations using g0 and g1 estimated 
in the first step as described in Van Raden (2008).  

Genome-wide covariance of minor allele counts. This approach initially introduced by Li and Horwitz 
(1953), was recently used by VanRaden (2008) to efficiently build the genomic relationship matrix used for 
genomic evaluations. Assuming Hardy-Weinberg equilibrium (HW) and linkage equilibrium (LE) locus 
specific F estimates can be efficiently obtained from biallelic marker data as GW-homozygosity by state 
(HBS) corrected for mean HBS in the base population divided by the variance in homozygosity expected at 
this locus under HW-LE (VanRaden, 2008). Locus specific estimates were averaged over loci to obtain a 
GW estimate. This estimator was denoted VR1. 

Weighted corrected similarity. Ritland (1996) extended the preceding approach to any kind of codominant 
markers by applying a 3-step procedure to compute at first allele-specific estimators which are combined into 
locus specific estimators and again combined into GW estimates. Briefly, the probability sikl to  sample  2  
homozygous  alleles  of  value  l  at  a  marker  k  in  an  individual  i  can  be  partitioned  as  sikl =  Fikl*pkl+ (1-
Fikl)*pkl

2(1) where Fikl is the F coefficient of individual i estimated using allele l at marker locus k and pkl 
denoting allele frequency of allele l at locus k. By reversing (1), allele specific Fikl coefficients can be 
estimated as Fikl = (sikl- pkl

2)/(pkl*(1- pkl)). In this moment estimator, expectation of allelic similarity sikl was 
replaced  by  its  observed  value  for  allele  l  at  locus  k  Sxykl = 0.25*(Iackl +  Iadkl +  Ibckl +  Ibdkl)  with  Ixykl an 
indicator variable equal to 0 if paternal allele x (a or b) and maternal allele y (c or d) are homozygous.  
At a locus, since all allelic types are not equally informative depending on their allele frequencies, it is 
desirable to find an optimal linear combination of allele specific estimators: 

l
ikllik FwF  which 

maximizes accuracy and minimizes bias of the locus specific estimator. The vector of optimal weights can be 
derived with a Lagrangian optimization procedure under constraint of minimal variance of the estimator by 
minimizing the derivative of Fikl under constraint of no bias. Using Lagrangian multipliers, it can be shown 
that wkl is  equal  to  wkl=V-1.1/(1 .́V-1.1) where V denotes the matrix of variance-covariance between allele 
specific estimators at a locus as described by Ritland (1996) and 1 is  a  vector  of  1.  Similarly,  a  second  
optimization procedure can be carried out to optimally combine locus-specific coefficients accounting for 
differences  in  informativeness  between  loci  arising  from  differences  in  MAF  across  loci  and  statistical
dependencies between markers. In the original estimator, Ritland (1996) set Fijk to  0  and  supposed  that  
markers were independent. Under those conditions, optimal locus specific weights were equal to the inverse 
of the locus specific estimator variance. This estimator was denoted WCS. 

Inclusion of pedigree information into Ritland´s estimator. Ignoring prior knowledge of pedigree to derive 
optimal weights may bias GW estimates, especially in intensively selected or small populations. Therefore, 
Fped estimates were included in the computation of weights to construct the V matrix. In this study, locus 
specific weights were also derived assuming independence between markers. This estimator including 
pedigree information was denoted WPCS. 
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Comparison criteria of estimators. F coefficients were estimated using allele frequencies observed either in 
the population of pedigree founders or in the genotyped population (4 last generations). Performance of 
estimators  was assessed based on i)  the average bias  (B),  ii)  the correlation coefficient  between true HBD 
and each estimator ( ) and finally iii) the linear regression slope ( ) of true HBD on each estimator as a 
measure of estimator unbiasedness.  

Results and Discussion. 

Distribution of allele frequencies 
The distribution of observed allele frequencies followed a uniform distribution (results not shown) in 
unselected as well as in selected populations. Over replicates, the mean correlations between observed allele 
frequencies in the genotyped and the pedigree founder populations were equal to 0.99 and 0.97 for 
unselected and selected populations, respectively. 

Table 1. Mean bias (B), correlation coefficient with true HBD ( ) and regression coefficient ( ) of true HBD on 
each estimator along with the standard errors of the mean (SEM) obtained for unselected populations over 30 
replicates 

Estimator Mean B (SEM) Mean 
(SEM) 

Mean  
(SEM) 

PED 0.00 (6.82E-04) 0.72 (0.11)* 1.02 (0.12) 
VR1 0.00 (7.67E-04) 0.91 (0.03)* 0.79 (0.04)* 
VR3 0.00 (1.41E-03) 0.97 (0.01) 0.88 (0.02)* 
WCS 0.00 (5.90E-04) 0.97 (0.01) 0.90 (0.02)* 
WPCS 0.00 (6.17E-04) 0.96 (0.01) 0.90 (0.02)* 
*Significantly different from 0 (or 1, accordingly) at a 5% error level 

Accuracy and bias of estimators in unselected populations. 
Over replicates, mean true HBD for individuals born in the last 4 generations was equal to 0.16% and mean 
standard deviation of HBD was 1.78%. Average biases of each estimator are presented in Table 1 along with 
correlation coefficients ( ) and regression coefficients ( ) of true HBD over inbreeding estimates. In 
unselected populations, no estimator was significantly biased (Table1). Pedigree estimator was less variable 
than marker-based estimators whereas variability of marker-based estimates was similar to the one of true 
HBD.  
Correlation coefficients of analyzed F estimators with true HBD presented larger range of values. Pedigree 
estimator was the least correlated with true HBD (0.72) although the coefficient obtained in the present study 
was much higher than in other studies (Keller et al., 2011). This is mainly due to the effects of scaling down 
the size of genomes in simulation studies which increases the variability of true HBD whereas Fped assumes 
an infinitely large number of independent chromosome segments. VR1 was strongly correlated with true 
HBD (0.91). VR3, WCS and WPCS were even more strongly correlated with true HBD (0.97) confirming 
that use of marker information clearly improves the estimation of realized inbreeding. Although no bias was 
detected on average for estimators in unselected populations, analysis of regression coefficients revealed 
occurrence of value-dependent bias. Average regression coefficient was close to 1 for Fped indicating that 
bias was not increasing with increasing values of true HBD. However, the variability of  was larger for Fped 
than for marker-based estimators over replicates. Regression coefficients for WCS and WPCS estimators 
were lower than 1 indicating that estimation bias tended to increase for animals with the most extreme values 
of HBD. This trend was even clearer for VR3 and VR1 (Table 1). In unselected populations, similar results 
were obtained whatever the definition of the base population since changes in allele frequencies were tiny 
between the pedigree founders and genotyped populations. 

Accuracy and bias of estimators in selected populations.  
Over replicates, mean true HBD for individuals born in the last 4 generations increased to 2.61% and average 
standard deviation of HBD was 3.60%. Comparison criteria were summarized in Table 2 and were computed 
using allele frequencies observed in the pedigree founder population.  
Pedigree estimates were significantly lower than true HBD (B= -0.009) and were also less variable (0.024). 
VR1 estimator was not significantly biased whereas WCS and WPCS significantly underestimated true HBD 
(Table 2). VR3 estimator tended to underestimate true genomic inbreeding but average bias did not 
significantly deviate from zero due to large variability of B over replicates.  
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In selected populations, the correlation coefficient between true HBD and Fped slightly decreased, indicating 
decreased estimation accuracy. However,  coefficient indicated that bias was still independent of HBD 
values. In selected populations, accuracy of marker-based estimators ( >0.91) increased. Indeed, since 
increases in HBS were supposed to arise mainly from increase in HBD, marker-based estimators were more 
able to explain variability in F between individuals based on their levels of HBS.  
Accuracy of VR1 was significantly lower than the one of other marker-based estimators (Table 2). Although 
no average bias was detected for VR1, regression coefficient  indicated that a value-dependent bias 
occurred. Thus, with VR1, no bias was observed at the population level whereas individual biases could 
happen, especially for individuals with most extreme HBD values. Other marker-based estimators also 
suffered, although to a smaller extent, from value-dependent bias. At this point, it should be noted that 
including pedigree into WCS did not improve estimation accuracy which was already high. However, it 
should be noted that proportion of animals with large F values was very small. When considering only 
animals with true HBD larger than 6.25%, including pedigree information reduced B and made  closer to 1, 
although those changes were not significant based on 30 replicates (results not shown). 

Table 2. Mean bias (B), correlation coefficient with true HBD values ( ) and regression coefficient ( ) of true 
HBD on each estimator along with standard errors of the mean (SEM) obtained for selected populations over 30 
replicates. 

Estimator Mean B 
(SEM) Mean  (SEM) Mean  (SEM)

PED -0.01 (0.003)* 0.67 (0.024)* 1.01 (0.043)

VR1 0.00 (0.003) 0.96 (0.004)* 0.90 (0.010)*

VR3 -0.01 (0.010) 0.98 (0.002)* 0.97 (0.012)*

WCS -0.01 (0.002)* 0.99 (0.001)* 0.97 (0.004)*

WPCS -0.01 (0.002)* 0.98 (0.002)* 0.97 (0.004)*
*Significantly different from 0 (or 1, accordingly) at a 5% error level 

As expected, when using allele frequencies observed in the current genotyped population, estimated mean F 
levels were close to 0 because this implicitly defined the genotyped population as the base population. All 
marker-based estimators requiring the use of allele frequencies (VR1, WCS and WPCS) were equally biased 
in this scenario (-0.027 ± 0.003). Interestingly, VR1 appeared to be more sensitive to the definition of allele 
frequencies than WCS and WPCS both in terms of  (0.87 ± 0.028) and  (0.81± 0.033) coefficients, 
although changes in allele frequencies were small between pedigree founder and genotyped populations. 
This meant that variance in true HBD explained by VR1 was strongly reduced and that value-dependent bias 
also increased. Therefore, it is clear that the allele frequencies to be used to construct genomic relationship 
matrices for genomic evaluations should be the ones estimated in the pedigree founder population and not 
the ones observed in the genotyped population (VanRaden, 2008).  
WCS estimator appeared to be robust to the different definitions of allele frequencies both in terms of 
accuracy ( =0.98 ± 0.003) and value-dependent bias ( =0.98± 0.007). On the contrary, estimation accuracy 
of WPCS was slightly reduced ( =0.95 ±0.009) and value-dependent bias increased ( =0.93±0.008) when 
considering genotyped individuals as the base population. This meant that more weight was given to allele 
frequencies in the weighting procedure when accounting for pedigree information leading to sub-optimality 
of weights, especially for individuals with the largest HBD values.  

Table 3. Mean rates of inbreeding ( F, in %) along with standard errors estimated over 30 replicates 
Estimator F (%) SEM(%) 
Ped 0.277 0.047 
VR1 0.507 0.085 
VR3 0.231* 0.067 
WCS 0.326 0.071 
WPCS 0.363 0.072 
True HBD 0.378 0.081 
*Significantly different from True HBD at a 5% error level 
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Estimation of inbreeding trends 
Finally, the ability of estimating rates of inbreeding ( F) was also investigated for the different estimators 
(Table 3) in the case of selected populations. From Table 3, it is clear that using PED and VR3 leads to 
underestimate F. Actually, Fped is a single point measure of inbreeding assuming that the considered marker 
was not subject of selection. This assumption is not tenable when intense selection is carried out on many 
QTL. True F were overestimated by VR1 (Table 3), with bias increasing over time (results not shown). All 
other marker-based estimators tended to underestimate F. WCS and especially WPCS appeared to be the 
best estimators of F, with estimates not significantly different from the true value based on 30 replicates. 
Further research is needed to find out if these results are always true considering a longer time horizon.  

Conclusion 
Results of this study showed that using dense panels of markers could significantly improve the accuracy of 
estimation of genome-wide inbreeding coefficients. Accuracy of marker-based estimators was improved for 
populations which have already been selected for many generations. In such selected populations, defining 
pedigree founders as the base population clearly reduced the estimation bias. Including pedigree information 
into WCS seemed to be useless given the high accuracy of this estimator and the low mean level of 
inbreeding in simulated populations. Besides, accounting for pedigree information into WPCS rendered the 
estimator more sensitive to the allele frequency definition. Finally, estimators of inbreeding displayed 
unequal ability to estimate inbreeding trends over time, with the most accurate ones being WCS and WPCS. 
Results from this study suggest that the choice of inbreeding estimators used to monitoring genetic diversity 
of selected populations is essential. 
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