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A Simplified Method for Computing the Lethality 
of Fragmenting Munitions Based on Physical 
Properties 

Bernt Åkesson

Abstract

This paper describes a computational model for assessing the lethality of 
fragmenting ammunition. The model is based on the physical properties of 
fragmenting ammunition and target elements and physical phenomena, 
including retardation of fragments due to air resistance and fragment 
perforation. The purpose of this paper is not to provide a detailed description 
of the model, but rather to provide a summary of the algorithm and the basic 
equations. An extended version of the model is in use in the Finnish Defence 
Forces.

1  Introduction

This paper provides a foundation for calculating the probability of kill for  
a single target element due to fragmenting munitions. The computational 
model is based on the physical properties of munitions and target elements. 

A numerical model for simulating fragmenting ammunition has been 
developed and used in the Finnish Defence Forces for over a decade. An initial 
version was presented by Heininen (2006). This model was extended by Lappi, 
Pottonen, Mäki, Jokinen, Saira, Åkesson, and Vulli (2008) to include handling 
of blast damage and direct hits and a model for delivery accuracy of multiple 
rounds. Further extensions of the model have been to take into account the 
shape of the terrain (Lappi, Sysikaski, Åkesson, and Yildirim, 2012) and the 
effect of forest environment (Roponen, 2015).

The fragmenting ammunition model has been validated using field 
experiments, in which 66 mortar bombs (120 mm high explosive) were fired 
in flat terrain, in three separate experiments (Åkesson, Lappi, Pettersson, 
Malmi, Syrjänen, Vulli, and Stenius, 2013). The physical model gives reliable 
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predictions in all three test cases (mean absolute error (MAE) = 1.1 %, no 
systematic error detected). The errors in the Carleton (MAE = 4.1 %) and the 
cookie cutter (MAE = 7.2 %) were threefold and sixfold, respectively.

The lethality model can be used directly as part of an effectiveness model, 
as shown in Figure 1, instead of using it to generate lethal areas or damage 
matrices. The Sandis combat model (Lappi, 2012), developed at the Finnish 
Defence Forces Technical Research Centre (now the Finnish Defence Research 
Agency), has incorporated an implementation of the effectiveness model since 
2006. A full software package, called EETU, which was designed specifically for 
indirect fire effectiveness assessment, was released in 2016. The effectiveness 
model implemented into EETU was designed to be modular and extensible, 
having interchangeable submodels.  This paper presents  a simplified version 
of the lethality model used in EETU.

Figure 1. The lethality model described in this paper can be connected to an 
effectiveness model, or be used as part of one. The Finnish Defence Forces has 
two implementations of the effectiveness model: one is incorporated into the 
Sandis combat model (Lappi, 2012) and a newer one into the EETU software 
package for indirect fire effectiveness assessment.
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The fragment effect model consists of four components: fragment patterns, a 
fragment drag model, a fragment perforation model and a target element mo-
del. A fragmentation warhead is characterized by fragment zones (also called 
fragment sprays and fragment fans), which are modelled as spherical zones, 
as illustrated in Figure 2. Fragmentation arena tests can provide experimental 
data on the warhead fragmentation patterns (US Army Test and Evaluation 
Command, 1993). 

A target element is described by a collection of armour segments facing 
different directions. The simple kill criterion used in this paper states that 
the target is considered killed if any of its armour segments are sufficently 
perforated by fragments or damaged by blast. The armour segments are 
considered independent of each other. More elaborate target element models 
with advanced kill rules can be constructed.

Since the lethality model is based on physical properties, it can also be used 
to investigate how changes in physical properties of munitions and target 
elements influence the overall weapon effectiveness. This can, e.g., be used to 
study weapons under development, or completely hypothetical weapons, in 
tactical scenarios or cost-effectiveness studies. An example of this type of study 
was presented by Haataja, Lappi and Åkesson (2017).  

This paper is organized as follows. The next section describes input data for 
model and presents example input data for a high explosive (HE) shell and a 
target element representing a prone soldier. This is followed by an outline of 
the general algorithm for computing the kill probability of a single fragmenting 
warhead to a single target element. Basic equations are presented in the 
following section. The paper ends with some concluding remarks.

2  Input Data

2.1 Parameters for Fragmenting Munitions

A fragmenting munition can be described by the following set of parameters. 

•	 Explosive fill in TNT equivalent mass / alternatively the mass and type of 
explosive. This is used for determining the blast effect. 

•	 An arbitrary number of fragment zones (also called fragment sprays), 
modelled as spherical zones, each having the following information 
 ° start and end angles with respect to the warhead nose
 ° fragment mass distribution (in tabular or functional form)
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 ° initial fragment speed
 ° fragment shape factor or, more generally, a drag model
 ° fragment perforation equation (Rilbe, THOR, etc.), chosen based  

on the shape and material of the fragments

Figure 2. Fragment zone described as a spherical zone. Figure adapted from 
Yager (2013).

2.1.1 Example: 155 mm HE Shell M107

The shell has an explosive fill of 6.6 kg TNT (Dullum, 2008). Illustrative 
parameters relating to fragmentation are presented in Table 1. The total mass 
of the shell casing is divided over the zones as follows: 15 % in the nose zone, 
80 % in the side zone and 5 % in the base zone. The angles of the fragment zones 
and the fraction of fragments in each zone are based on data for a generic HE 
shell given in Kenttätykistöopas I: Ampumaoppi (1990).
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Table 1. Fragmentation characteristics of a 155 mm HE shell M107, based on open source data. 
The initial fragment speed and average fragment mass are based on data by Krauthammer (2008).
Parameter Nose zone Side zone Base zone
Lower zone angle 0° 65° 170°
Upper zone angle 10° 115° 180°
Initial fragment speed 
at start angle 

1030 m/s 1030 m/s 1030 m/s

Initial fragment speed 
at end angle 

1030 m/s 1030 m/s 1030 m/s

Fragment  
distribution

Mott distribution, 
381 fragments with 
average mass 14.34 g

Mott distribution, 
2030 fragments with 
average mass 14.34 g 

Mott distribution, 
127 fragments with 
average mass 14.34 g 

Fragment drag model Irregular fragments Irregular fragments Irregular fragments
Fragment  
perforation model

Rilbe, steel  
fragments

Rilbe, steel fragments Rilbe, steel fragments

The warhead data can be stored in an arbitrary format. One such format is the 
ZDATA file format (Yager, 2013), in which the fragment mass distribution for 
each zone is given in tabular form and the fragments have a shape factor used 
for computing drag. 

2.2  Target Element Parameters

The target elements can be represented in three dimensions by a set of armour 
segments, each having a relative position, a normal vector and an area. Each 
segment is given a thickness value and material type, e.g. mild steel. Additionally, 
criteria for blast damage may be added to each segment.

This model has the advantage that personnel and vehicles can be handled 
in a similar manner. It also makes it straightforward to model the effect of 
protective gear for personnel, as well as different postures. 

2.2.1 Example: Prone Soldier

Dimensions of a prone soldier are presented in Table 2.

Table 2. Dimensions of a prone soldier. A fragment capable of perforating 1.5 mm of mild steel 
is considered sufficient of causing incapacitation. Source of areas: Saarelainen (2007).

 Aspect Area [m2] Equivalent steel thickness [mm]
Front/Rear 0.08 1.5
Left/Right 0.38 1.5
Top 0.61 1.5
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3 Calculating Fragment and Blast Effects to a Single Target  
 Element

This section presents a simple algorithm for calculating the kill probability of 
a single fragmenting warhead to a single target element. It is assumed that the 
warhead detonates at ground level or above the ground. The geometry of the 
warhead/target element interaction is illustrated in Figure 3.

Figure 3. Terminal ballistics geometry. Figure adapted from Driels (2004).

A simple kill rule is to consider the target element killed if any of its armour 
segments are damaged by either blast or fragments. This kill rule is generally 
sufficient for target elements representing personnel. Let pk,j be the probability 
that the jth armour segment is killed. The overall kill probability for the target 
element is then

         (1)

Let pblast,j be the probability that the jth target segment is killed by blast and let 
pfrag,i,j be the probability that the jth target segment is killed by fragments from 
the ith fragment zone. Then pk,j can be computed from

        
        (2)
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The algorithm is outlined in Figure 4.

Figure 4. Algorithm for computing the kill probability of a single warhead to  
a single target element.

4 Basic Equations

4.1 Fragment Mass Distributions

We define the complementary cumulative distribution function (CCDF) of the 
fragment mass distribution as 

 

Figure 4. Algorithm for computing the kill probability of a single warhead to a single 
target element. 

 

Basic Equations 

Fragment Mass Distributions 

We define the complementary cumulative distribution function (CCDF) of the fragment mass 
distribution as  
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This is the cumulative number of fragments having a mass greater than a given mass m. 

Here, three fragment mass distributions are presented: a discrete (categorical) distribution, the 
Mott distribution (Mott, 1943) and the Held distribution (Held, 1990). Several other distributions 
are available as well, see e.g. Elek and Jaramaz (2009). 

The following inputs are needed:  
• Target element location and orientation  

• Warhead velocity vector  and desired point of burst 

• Warhead and target element parameters, see section “Input Data” 

• Optional: digital elevation model of the target area  

The algorithm for computing the probability of kill is outlined as follows. 

1. Determine the point of burst based on fuze settings and terrain 
2. For all armour segments j in target element: 
  2.1 Calculate distance from point of burst to segment 
  2.2 Calculate blast kill probability pblast,j for segment j, see section “Blast 
Damage” 
 2.3 For all fragment zones i in the warhead: 
   2.3.1 Calculate dynamic zone angles, Eq. (10) 
   2.3.2 Check that armour segment is within the fragment zone 

2.3.3 Calculate projected area of armour segment  
  2.3.4 Check that armour segment is facing the point of burst 
  2.3.5 Check for line of sight from point of burst to armour segment 
  2.3.6 Calculate surface area of fragment zone, Eq. (9) 
  2.3.7 Calculate minimum mass capable of perforation, Eq. (15) 
  2.3.8 Calculate the number of effective fragments, Eq. (14) 
  2.3.9 Calculate fragment kill probability pfrag,i,j, Eq. (11)  

 2.4 Calculate kill probability pk,j for segment j, Eq. (2) 
3. Calculate kill probability for target element, Eq. (1) 
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Here, three fragment mass distributions are presented: a discrete (categorical) 
distribution, the Mott distribution (Mott, 1943) and the Held distribution 
(Held, 1990). Several other distributions are available as well, see e.g. Elek and 
Jaramaz (2009).

4.1.1 Categorical Distribution

A straightforward way of describing a fragment mass distribution in a fragment 
zone is to divide the fragment masses into ng mass groups. Each group i contains 
ni fragments with average mass mi. 

In this case, the CCDF is 

        (4)

4.1.2 The Mott Distribution

The Mott distribution has the following parameters 
•	 N0 – Total number of fragments
•	 mavg – Average mass of fragments [kg]

The total mass of fragments in the distribution is given by 

        (5)

The CCDF of the Mott distribution is given by 
  
        (6)

4.1.3 The Held Distribution

The Held distribution has the following parameters 
•	 M0 – Total mass of fragments in distribution [kg]
•	 B – Scaling factor
•	 λ – Form factor 

The CCDF of the Held distribution is an implicit function and has to be solved 
numerically with respect to N for a given mass m. 

        
        (7)
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4.2  Fragment Kill Probability

4.2.1 Fragment Hit Probability

Assume an area A perpendicular to the fragment path. If the area of the 
fragment zone Azone is large compared to the area A, the probability of fragment 
hitting the area is 

        (8)

The fragment pattern of an HE shell can be modelled as a spherical zone, 
defined by an upper and a lower angle. Due to the velocity of the projectile, the 
angles of the zones will change and the total initial velocity of the fragments 
will be the resultant of the projectile velocity and the initial velocity in the static 
case. An illustration of fragment zones for a shell at rest and a shell in motion 
is shown in Figure 5. The static angles, when the shell is at rest, are denoted by 
α and the corresponding dynamic zones, when the shell is in motion, by β. The 
area of a spherical zone is

                                                       (9)

where x is the distance and βstart and βend are the start angle and end angle of the 
fragment zone, respectively. 

Figure 5. Fragment zone angles for a shell at rest and in motion. Figure adapted 
from Åkesson et al. (2013)
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The angles are defined such that 0° ≤ αstart ≤ αend ≤ 180°, where 0° is in the direction 
of the shell’s nose.

Given the static angle α, the fragment initial speed in the static case and the 
shell velocity, the dynamic angle can be calculated from

                  (10)

with:
β = dynamic fragment zone angle 
α = static fragment zone angle 
vshell =  shell speed 
vfrag =  fragment speed in the static case 
vtot = total fragment speed

4.2.2 A Simple Kill Rule Based on Fragment Perforation

The probability of at least k perforating fragment hits is calculated using the 
binomial distribution 

       ,         (11)

where neff is the number of effective, i.e., perforating, fragments. FX,Bin(k; n, p) is 
the cumulative distribution function of the binomial distribution.

In the special case where we calculate the probability of at least one perforating 
fragment, Eq. (11) simplifies to 
with:
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Two drag models are presented here. The first one has a general form and is 
applicable to fragments with regular shape. The second one is intended for 
irregular fragments, formed by natural fragmentation.

4.3.1 General Drag Model

A general drag model can be derived from the drag equation and Newton’s 
second law, 

         (19)

with:
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x =  the distance traversed [m] 
v0 = the initial speed [m/s] 
ρa  = density of air [kg/m3] (ρa ≈ 1.2 kg/m3)
Cd = (unitless) drag coefficient 
A  = average cross-sectional area of the fragment [m2] 
m  = fragment mass [kg]

The drag coefficient Cd depends on the shape and orientation of the fragment 
and on the Mach number M and the Reynolds number Re. The value of the 
Reynolds number gives an indication about the type of fluid flow around an 
object. The variation with Reynolds number is usually small within practical 
regions of interest, and the dependency is therefore ignored. Examples of drag 
coefficients for cubes and spheres are listed in Table 3. 

Table 3. Drag coefficients for various shapes. Mach region indicates the Mach values for which 
the drag coefficient has been defined. Source: Janzon (1971) and US Army Test and Evaluation 
Command (1993).
 Shape Cd Mach Region

 Cube 0.83 M ≤ 0.9
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 Sphere 0.49 M ≤ 0.9

 Sphere 0.93 M > 0.9

�������e��       (15) 

subject to the following constraints 

� � �      (16) 

����� ��) � ����     (17) 

where fe(·) is a perforation equation. The striking speed �� is given by a drag model 

�� � ���� ��� ��).     (18) 

This can be solved as a constrained nonlinear program. It can also be set up as a nonlinear root 
search problem.  

Instead of using a perforation model, the fragment lethality can, e.g., be based on its kinetic 
energy. In that case the effectiveness threshold emin is defined as a minimum kinetic energy and 
function fe(·) as the formula for kinetic energy. However, when using kinetic energy as the 
lethality criterion, the influence of different fragment shapes and materials cannot be observed 
from the results. 

 

Fragment Drag Models 

The drag models provide the fragment speed at a distance x, given an initial speed v0. They are 
used for calculating the striking speed vs of the fragment, when the point of detonation and the 
position of the target element are known. Two drag models are presented here. The first one 
has a general form and is applicable to fragments with regular shape. The second one is 
intended for irregular fragments, formed by natural fragmentation. 

  

General Drag Model 

A general drag model can be derived from the drag equation and Newton’s second law,  

���) � ��exp �− ������
�� �     (19) 

with: 

v(x) =  speed at distance x [m/s] 
x =  the distance traversed [m] 
v0 = the initial speed [m/s] 
ρa  = density of air [kg/m3] (ρa ≈ 1.2 kg/m3) 
Cd = (unitless) drag coefficient 
A  = average cross-sectional area of the fragment [m2] 
m  = fragment mass [kg] 

The drag coefficient Cd depends on the shape and orientation of the fragment and on the Mach 
number M and the Reynolds number Re. The value of the Reynolds number gives an indication 



187

4.3.2 Drag Model for Irregular Fragments

A fragment shape factor fk can be introduced,

        (20)

with:
fk = fragment shape factor [m2/(kg)2/3] 
A = average cross-sectional area of the fragment [m2] 
m  = fragment mass [kg]

Substituting Eq. (20) into Eq. (19), the following equation is derived  
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where

        (22)

The value of coefficient k is determined experimentally and represents an 
average for all fragments in the fragment zone. In Technical Manual TM 5-855-1: 
Fundamentals of protective design from conventional weapons (1986) and United 
Facilities Criteria (UFC): Structures to resist the effects of accidental explosions, 
Change 2 (2014) the value k = 0.004 (kg)1/3/m is given for a steel fragment 
of some standard shape. The following parameter values for a steel fragment 
are given in by Noopila (1984) and Nilsson (2010), the original sources being 
reports published by the Swedish National Defence Research Institute (FOA) in
 the 1970s
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4.4.1 The Rilbe Formula

The Rilbe formula (Rilbe, 1970) is used to compute the perforation capacity of 
a fragment with a certain mass and striking speed. The formula is expressed as 

        (24)

with:
e  = the target thickness [m] 
q = a parameter that depends on the fragment material, target   
  material and fragment shape [s(kg)-1/3], see Table 4 
vs  = the striking speed [m/s] 
m  = the fragment mass [kg]

Table 4 lists values for constant q for a few combinations of fragment and target 
material.

Table 4. Rilbe constants for Eq. (24). Source: Rilbe (1970). 
 q [s(kg)-1/3]

 Fragment Target material
 Material Shape Mild steel (SIS 1311) Dural
 Steel Soft sphere (HRC 12) 56∙10-6 115∙10-6

Cube 42∙10-6 90∙10-6

Natural fragment 39∙10-6 82∙10-6 (calculated) /  
70∙10-6 (experimental)

 Tungsten Small sphere (diam. ≤12 mm) 72∙10-6 190∙10-6

Cube 61∙10-6 150∙10-6

4.4.2 The THOR Equations

There is a number of variations of the THOR formula (Ballistic Analysis Labo-
ratory, 1959; Ballistic Analysis Laboratory, 1961; Crull and Swisdak, Jr., 2005; 
Dusenberry, 2010). One can use the formula to estimate the residual speed of 
the fragment after exiting the target plate or the striking speed necessary to 
perforate a target plate of a specific thickness. The equations can be simplified 
by making assumptions about the fragment shape. 

By setting the residual fragment speed to zero, we obtain the ballistic limit 
for a general fragment shape 

 
       
        (25)
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By setting the residual fragment speed to zero, we obtain the ballistic limit for a general fragment 
shape  

�� = 10�������������������������    (25) 

and for a specific fragment 

�� = 10�����∗ ������∗�����������    (26) 

with: 

vs = the fragment striking speed [m/s] 
e  = the target thickness [m] 
A =  the average impact area of the fragment [m2] 
m  = the mass of the fragment [kg] 
θ = the angle between the trajectory of the fragment and the normal to 
the target material 
c1,SI, c1,SI*, α1, β1, β1*, γ1 = constants determined separately for each material, see Table 
5 

Constants for the THOR equations are given in Table 5. 

Table 5. THOR constants for equations (25) and (26). The fragment material is steel. 
Source: Ballistic Analysis Laboratory (1959), Ballistic Analysis Laboratory (1961) and 
Crull and Swisdak, Jr. (2005). 

Target Material β1 c1,SI c1* β1* c1,SI* γ1 α1 
Aluminium alloy (2024-T3) -0.941 6.049 4.276 -0.399 3.781 1.098 0.903 

Cast iron -2.204 10.867 5.533 -0.747 5.375 2.156 2.186 
Copper -3.687 14.950 6.823 -1.403 5.975 4.270 3.476 
Lead -2.753 12.037 5.175 -0.930 3.127 3.590 2.735 
Magnesium -1.076 6.141 4.226 -0.406 3.611 0.966 1.004 
Steel, face-hardened -1.397 7.026 5.178 -0.603 4.036 1.747 1.191 
Steel, mild homogenous -0.963 6.309 4.608 -0.359 4.034 1.286 0.906 
Steel, hard homogenous -0.963 6.387 4.685 -0.359 4.111 1.286 0.906 
Titanium alloy -1.314 7.873 4.753 -0.431 4.545 1.643 1.325 

 

Blast Damage 

A blast wave generated in air and transmitted through the air is characterized primarily by a 
peak overpressure and a specific impulse, the latter being the integral of the overpressure over 
the positive phase time duration.   

There are diagrams and numerical models available for TNT for determining the peak 
overpressure and impulse as a function of the distance from the point of detonation. Such 
diagrams are given e.g. in United Facilities Criteria (UFC): Structures to resist the effects of 
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explosives other than TNT, one can convert the mass to a TNT equivalent 
by multiplying with a scaling factor (Cooper, 1996). As some of the energy 
released by the detonation goes into fracturing the shell casing, this also needs 
to be considered, by converting the mass into bare equivalent charge.

Threshold values for various levels of damage to personnel and structures 
from overpressure and impulse can be found in literature, enabling a simple 
three-dimesional cookie cutter damage function to be used for detonations in 
free air. 

5  Conclusion

In this paper a computational model for assessing the lethality of fragmenting 
ammunition based on physical properties was presented. The model can be 
used as part of an effectiveness model, to estimate losses caused by fire missions 
on targets consisting of multiple target elements. The model is in use in the 
Finnish Defence Forces in two software implementations: the Sandis combat 
model and the newer indirect fire effectiveness assessment software EETU. 

Remark

The author wrote the original manuscript, A Physics-based Lethality Model for 
Fragmenting Ammunition, in 2014–2015 as a white paper with the purpose of 
providing a summary of the algorithm and key equations and parameters of 
the lethality model implemented into the EETU software package. During that 
time the author was a member of the team of experts responsible for updating 
NATO standard 4654 (Indirect Fire Appreciation Modelling) and the white 
paper was used when writing the new version of the standard. The original 
white paper has not been published, but it has been included in the material 
distributed with EETU.  The model description in this paper is included in the 
new version of the standard, titled AOP-4654 Edition A Version 1, which was 
released in June 2021.
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