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ABSTRACT 

In several applications demanding precise and ultra-precision movements, porous aerostatic thrust bearings 
had been employed as a crucial precision engineering component and enabling technology. By acting as a lubricant 
between the moving part and the stationary part in aerostatic bearings, pressurized air almost completely elimi-
nates friction. Since air acts as the lubricant, oil-based lubricants leave no debris behind. The air prolongs the life of 
the substances by preventing them from slipping and wearing. The aerostatic type uses graphite as a porous film 
to disrupt the air uniformly over the surface, or a tiny hole is drilled through the centre of the bearing to let the air 
circulate and produce a thin layer between the components. With an increased reliance on computational and 
mathematical methodologies for design and bearing performance optimization, this review paper aims to present 
the state-of-the-art in aerostatic bearings advancement and research. It also conducts a critical analysis of their fu-
ture research directions and development trends in the next ten years and beyond. Air bearings are utilized in the 
production of tools like lathes, CMM, and grinders because they are highly precise in their operation and decrease 
mistakes and production time. Air bearings are available in a variety of forms and sizes. The assessment of future 
trends and obstacles in aerostatic bearings investigation, as well as their prospective applications in the precision 
engineering sectors, concludes the study. 
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Introduction 

Due to the simplicity of using porous material to create 
an aerostatic bearing, aerostatic porous bearings have been 
effectively used in precision machine tools and precision 
measurement equipment. Recently, improved ceramics and 
graphite, which can attain a modest permeability in the 
range of 10-15 m2, have frequently replaced metal in porous 
materials. This is due to the fact that employing porous 
material with a reduced permeability makes it simple to get 
a greater bearing stiffness [1-2]. The aerostatic bearings, 
which have been widely used in a variety of applications, 
including the manufacturing of semiconductors, medical 
devices, ultra-precision measuring, turbomachinery, 
machining equipment, etc., use a pressurised thin air film 
of micron-level thickness to support the moving objects. 
Some properties of aerostatic bearings are low friction, 
precise rotation, and ultra-precision. In order to fulfil the 
needs for enhanced performance in associated sectors such 
as semiconductors, defence, microelectronic, textile, 
aerospace, and measuring instruments, extensive research 
has been undertaken on the performance of aerostatic 

thrust bearing [3-5]. 

Aerostatic bearings serve two primary purposes, 
namely, the minimization of friction and motion faults. The 
stiffness, static properties, and load-carrying capacity of 
aerostatic thrust bearings have all been explored in earlier 
works. The features of aerostatic porous bearing with 
something like a surface-limited layer have been published 
by a number of studies. Aerostatic circular porous thrust 
bearings were treated with a surface limited layer by 
Yoshimoto [6]. They looked into the static and dynamic 
properties of this particular type of graphite bearing both 
theoretically and empirically. They also presumptively 
believed that Darcy's law applies to airflow in a surface 
limited layer. However, because a limited layer was often 
very thin, the radial flow and porosity in it were considered 
to be zero in their calculations.  

Yabe et al. [7] employed porous metal with a limited 
layer created using a surface grinder to treat an aerostatic 
circular porous thrust bearing. For the situation of a 
reasonably large bearing clearance of some more than 20 
mm, where the dynamic characteristics are not significantly 
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impacted by the squeezing effect, they reported the 
theoretically predicted and empirically determined 
dynamic characteristics of this type of bearing. They 
discovered that theoretical conclusions drawn from their 
comparable clearance model were in good accord with the 
findings of the experiments. An aerostatic annular porous 
thrust bearing made of surface-restricted graphite was 
researched by Cui and Ono [8]. The permeability of this 
porous substance is approximately one-tenth of that of the 
porous metal that Yabe et al. [7] studied. As a result, they 
looked at the bearing properties in a limited (10 mm or 
less) bearing clearance range. Lacquering was used to 
create the surface-restricted layer of porous graphite 
material. Using a perturbation approach, Kawashima and 
Togo et al. [9] theoretically examined the static properties 
of aerostatic porous ceramic journal bearings. They also 
applied a confined layer to an aerostatic porous journal 
bearing; however, they simply displayed the pressure 
gradient in the porous material. 

The techniques of annular groove air supply and entire 
air supply, which were employed to prevent the deflection 
of the bearing surface of aerostatic circular porous thrust 
bearings, were researched by Yoshimoto et al. [10]. Otsu et 
al. [11] evaluated the dynamic stiffness and damping 
coefficient of aerostatic porous journal bearings and 
also demonstrated that raising the permeability and 
lowering the small surface restriction ratio can result in 
higher dynamic stiffness and a higher damping coefficient. 
The micro-vibration of aerostatic thrust bearings with 
surface limitation provided by T-shaped grooves was 
explored by Yoshimura et al. [12]. They found that the 
Reynolds number at the bearing outlet significantly 
affected the nano-fluctuation of aerostatic bearings. 
According to research, restrictors made of porous material 
with permeabilities in the order of 1e-15 mm2 can reach the 
ideal bearing clearance of less than 10 mm, which 
corresponds to the maximum static stiffness. This can 
increase the stiffness and stability of aerostatic porous 
bearings. Aerostatic bearings' stiffness and stability are 
both governed by the internal pressure distribution in the 
bearing clearance, and the manufacturing flaws have an 
impact on the thickness of the bearing clearance. Therefore, 

the effects of manufacturing mistakes cannot be 
disregarded, particularly in gaps with thinner film. Since 
1828, when Willis [13] conducted an experimental 
investigation into the airflow state between two parallel 
plane surfaces, air lubrication technology has been a 
growing field. Kingsbury [14] tested the supporting 
properties of an air journal bearing near the end of the 19th 
century, confirming the viability of gas bearing. Then, in 
the early 1900s, several patents relating to gas bearings 
were granted [15]. Instances include the air thrust bearing 
developed by Westinghouse [16] in 1904 and the aerostatic 
journal bearing developed by Abbott [17] in 1916. 
However, very few studies pertaining to the fundamentals 
of gas lubrication were documented in the next decades 
[18]. Figure 2 displays the Scopus [19] document search 
results for the keywords "air bearing or gas bearing." Due 
to demands from the nuclear power and defence sectors, 
gas lubrication technology initially took off in developed 
nations like the United States during World War II [20]. 
Aerostatic bearings have been invented, produced, and 
extensively used in a variety of sectors since their specific 
inception, including high-speed dentistry drills [17], space 
simulators [18], precise machine tools, and measurement 
equipment [19]. It clarifies the cause of the first discernible 
upward trend from 1960. Numerous monographs on gas 
lubrication technology were produced during the 1970s 
and 1990s, which denotes a mature time for its design 
theory [13–21]. The top ten nations in terms of air-bearing 
research are listed in Fig. 2. It is clear that the United States, 
China, Japan, and other countries hold the top spot. The 
top 10 nations in gas bearing research are also nations with 
strong needs for ultra-precision machinery, confirming the 
importance of gas bearings as essential parts of ultra-
precision machinery. 

Aerostatic bearings have been known to employ porous 
materials as restrictors in the past. Its improved damping 
properties, larger load capacity, rigidity, and ease of design 
and fabrication over traditional restrictors are only a few of 
its numerous benefits [22]. It is simple to obtain even 
complex bearing geometries like spherical bearings and 
aerostatic lead screws [23]. Numerous bearing geometries 
have been covered in the theories of porous aerostatic 

Figure 1: Aerostatic Journal Bearing (a) Schematic View (b) Original View [79] 
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bearings. Two bibliographic evaluations are among the 
numerous publications; the first was written by Sneck in 
1968 [24]. Majumdar subsequently modified this in 1976 
[25]. The foundations of porous aerostatic bearings had 
previously been established in published literature at that 
point, comprising one-dimensional analytical models and 
two-dimensional calculations with adjustment for 
compressible, slip, and inertia flows. Theoretical and 
experimental research has also been done on dynamic and 
stability properties. The majority of these papers made the 
assumption that Darcy's rule applied to flow through 
porous media.  

After 1976, a sizable amount of work was also recorded, 
particularly more recently as a result of rekindled interest 
in Japan and Germany. Two primary streams can be 
formed from them. Several theoretical investigations, 
including three-dimensional numerical assessments on 
rectangular thrust bearings that contain additional factors 
such as permeability anisotropy, tilt, slip flow, offset load 
etc., have been the focus of a group of researchers in India. 

To produce load-bearing capacity, air bearings need an 
external high-pressure air supply. Air pressure between 
400 and 600 kPa, which is what is generally employed in 
the sector, is used in the majority of air-bearing 
applications. The input pressure is rather low, which limits 
the load-carrying capability. Using a specialised 
compressor, air bearings may be used in sensitive 
applications with pressures of up to 1000 kPa. This 
increases load-bearing capacity and rigidity [28]. In 
comparison to other bearing ideas, the air bearing offers 
significant benefits such as extremely low friction, minimal 

wear, and wide range of working speed [29–30]. The air 
bearing is a part that is utilised in the construction of ultra-
precise machinery. It works incredibly well in absorbing 
vibrations from the environment [31]. There is very little 
space between the components and the bearing, which is 
the fundamental drawback of air bearings. As a result, it 
needs extremely tight tolerances. It requires compressed air 
to operate continuously. Air bearings are also not very 
rigid. However, preloading the bearing can greatly boost 
rigidity. Preloading air bearings can be done in four ways: 
weight addition, magnetic attraction, opposing assembly, 
and vacuum preloading. The vacuum preloading approach 
is popular since it is small and does not add additional 
weight [32–33]. To accomplish uniform air distribution to 
the contact surface and uniform pressure distribution in 
the air bearing, a porous material is employed [34–35]. 

The review discussed on this page includes theoretical 
and experimental research, as well as the major 
conclusions drawn from them, which are mostly based on 
the many invented bores. Additionally, several materials 
used in the fabrication of PATB's components as well as 
their production processes, have been shown and explored. 
Additionally, each part offers evaluations in the way of the 
authors' current examinations, remarks, and potential 
future paths. In a few instances, it has been discovered that 
refrigerants, oils or lubricants have already been utilised in 
compliant bore journal bearings in place of air. As a result, 
this article has also covered these bearings' performance 
characteristics. For the convenience of the researchers, a 
summary of the review and the potential areas for further 
investigation are provided at the conclusion of this article. 

Figure 2: Annual documents quantity of articles related to air bearings by searching with keywords of ‘air bearing’ in Sco-
pus.  
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Materials used in the fabrication of PATBs  

Since the air film's pressure is produced by an external 
air supply system, aerostatic bearings are also known as 
externally pressurized air bearings. Through a specialized 
restrictor, pressurized air is introduced into the space 
between two bearing surfaces, and from the exit edges of 
the bearing clearance, it is released into the ambient 
environment. In the space between fixed and moving 
pieces, the thin layer serves as a lubricant. Since the 
moving and stationary surfaces of an air bearing are not in 
touch while it is operating, it not only avoids numerous 
issues common to traditional bearings, like wear and 
friction but also has unique advantages for precise 
placement. 

The characterization of coated layers on the journal 
substrates and upper foil is offered after a study of the 
materials used in making the various PATB components. 
Near the end of this part, the fabrication processes for the 
bearing components were covered. According to a 
literature review, the journal/rotor as well as the sleeves, 
are often made from the same materials. Moreover, to 
reduce tribological issues and boost heat dissipation 
during starts and stops, hard-coated layers have been 
placed on the top-compliant foil or journal and bearing 
surface. To give resistance to fatigue and extra dampening 
to the system, compliant journal-bearing surfaces should 
have good elastic behaviour and increased heat 
conductivity. To create the traditional stiff PATBs and the 
rotors, the researchers employed high carbon chromium 
(AISI 52100) alloy steel [36]. The rotors and PATBs have 
also been constructed using stainless steel-(AISI TY416) 
and toughened steel [37–39]. Additionally, sleeves for the 
PATBs have also been made using stainless steel-(SAE/
AISI 316 L) [40]. Graphite has been put on the PATBs to 
enhance their tribological behaviour. Additionally, it was 

discovered that bronze was used in the manufacturing of 
both the standard and herringbone grooved stiff PATBs' 
sleeves [38, 41, 42]. 

To reduce wear and improve heat dissipation rate 
during rotor start and stop, several coating materials were 
applied to the PATB bore/rotor surfaces. The compliant-
bore surfaces were made using a variety of materials with 
strong elastic and damping capabilities. The dynamic and 
tribological performances of PATBs have been compared, 
but little study has been done to compare them when the 
materials for the compliant surface, sleeve, coating, and 
rotor are changed. The functioning of rotors sustained by 
PATBs during frequent stop/start and extended running 
circumstances with various factors was also the subject of 
few research, which has been reported. 

Operating Conditions for PATB: 

The gas film clearance is often less than 10 m, which is 
quite small. Accurate measurements of the pressure 
distribution in the bearing clearance might be challenging 
to achieve. There are two primary ways to assess pressure 
distribution. To detect the pressure distribution in the gas 
film, the pressure sensor is first connected to the orifice. On 
one of the pad's surfaces, the orifice is drilled [56]. In the 
literature, this tiny aperture is referred to as the flow intake 
(dp = 0.2 mm) [58]. This method's pressure distribution 
and the outcomes of the numerical simulation are in good 
accord. Although, there are still certain drawbacks to the 
approach used to connect the pressure sensor to the orifice 
plate. Secondly, there are noticeable and not insignificant 
changes to the airflow in the small gap, as well as 
significant measurement errors. Moreover, the number and 
location of experimental data that may be collected using 
this approach are also constrained [112]. 

Table 1: Materials used in an aerostatic bearing by different researchers. 
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Theoretical Research on PATB: 

The previous research on theoretical modelling 
methods and related performance evaluations of 
aerostatic bearings under continuously loaded situations is 
reviewed in this part, along with a few notable works that 
represent state-of-the-art investigation in this field. This 
section discusses the evolution of research on various 
PATBs (as shown in Fig. 3). 

Malanoski [37] solved the numerical simulations to 
determine the radial stiffness and the system critical mass 
using FDM and Runge-Kutta (4th Order) techniques. With 
modifications in rotating speed, the stability zones were 
demonstrated. Using FEM and the perturbation approach 
for discretization, Bonneau and Absi [83] and Faria [84] 
observed the alterations of stiffness coefficients of bearing 
with variations in eccentricity ratio, compressibility 
number, groove depth, and groove angle. By using the 
time marching approach, Kim et al. [85] showed a 
significant increase in stability by employing axial grooves 
at the beginning of each stage in a multi-stepped PATB. 
Critical mass, critical frequency, and stability zones for the 
helical grooved PATB (conical) or rotor system have been 
shown by Pan and Kim [86] using variations in 
compressibility number. In the instance of the herringbone 
grooved PATB, Chu et al. [87] utilised the perturbation 
approach and FEM for discretization, and the results 
demonstrate enhanced dynamic coefficients when 
compared to plain bore PATB under lightly loaded 
conditions. By taking into account lobbed bore geometry 
and the time marching approach, Rashidi et al. [88] have 
observed periodic responses and multi-periodic responses 
of the journal centre. By maximising geometric/operating 
characteristics, Schiffmann and Favrat [89] decrease 
windage losses and increase stability margin. In order to 
increase the rotor critical speed, the ideal groove 
dimensions have been proposed by Miyanaga and 
Tomioka [90]. According to Guenat and Schiffmann [161], 
herringbone grooved journal bearings, as compared with 
plain journal bearings, are more susceptible to moist air. 
The load-carrying capacity, which has improved with an 
expansion in the contact area between leaf foils, was 

determined using FDM by Du et al. [91] and Li et al. [92]. 
When the couple-stress parameter was increased, Laouadi 
et al. [93] observed that the peak pressure, altitude angle, 
frictional losses, and side leakage were all reduced. In 
order to solve the modified Reynolds equation, Bonello 
[94] used FEM and FDM. He then noticed that the clamped 
free or leading trailing edge of the top foil combination 
produced a uniform film thickness in the diverging zone, 
which produced atmospheric pressure. The implications of 
friction and partings along bump foil-top foil and sleeve-
bump foil have been studied by Gu et al. [95]. The model's 
output has been contrasted with the experimental data and 
previously published models, and any differences have 
been explained. Baum et al. [96] found that the suggested 
model is very computationally productive in respect of 
accuracy and time by using FEM and Galerkin's approach 
to determine pressure distribution, load-displacement 
curves, solution accuracy, and simulation time. The 3D 
deformation simulations of top or bump foil, bearing 
sleeve, contact between the bump and top foil, FEM 
approach, and misalignment for discretization have been 
studied by Yongpeng et al. [97] and Zhao and Xiao [98]. 
They discovered that at the diverging area of the film, the 
top foil is momentarily disconnected from the assisting 
bump foil. By using the perturbation method and the FEA 
method, Howard et al. [49] assessed the bearing dynamic 
coefficient and noted that as the grove depth increased 
and the damping coefficient across the trend of the external 
load increased, whereas the coefficient decreased as it 
is perpendicular to the external load. 

Experimental Research on PATB: 

External damping is a useful technique for reducing the 
large amplitude vibrations, according to a literature review 
on the experimental investigation of the rotor’s dynamic 
characteristics, which is supported by conventional rigid 
bore PATBs [7-31]. The gas/air film's direct damping 
coefficients are improved by external damping. The air/
gas film's cross-coupled stiffness allowed dissipation forces 
to work in opposition to the unstable tangential forces 
generated. The generated tangential force aids in reducing 

Figure 3: Aerostatic Thrust Bearing (a) with a simple orifice (b) with a porous layer [111]  
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rotor vibrations. In this part, a summary of the 
experimental study work carried out by several tribologists 
is presented. 

To determine power loss, Radil and Dellacorte [99] 
assessed frictional torque. Then they showed a 3D map in 
case of power loss with respect to various rotating speeds 
and external loads. According to Li et al. 
[100]'s observations, the vertical eccentricity increases as 
the bearing load increases while decreasing as the rotating 
speed increases. Employing the piezoelectric actuator 
frequency and voltage, Ha et al. [101] examined the 
floating height and discovered that when the piezoelectric 
actuator voltage was raised, the squeezing film pressure at 
zero rotating speed increased the floating height of the 
journal. The viability of the function of the compression 
spring-supported PATB has been shown by Song and Kim 
[102]. After the rotor is in the air, Andres et al. [103] 
monitored the bearing torque with the temperature 
increase. As the rotating speed and applied load have 
grown, so have the frictional torque and bearing 
temperature. In the lengthy steady-state procedure, Feng et 
al. [104] noticed that the bearing temperature (measured 
using a thermocouple) had achieved a saturation level. 
Mahner et al. [105] discovered that an increase in the 
external load led to an increase in the component assembly 
temperatures. Eddy current displacement sensors were 
used by Li et al. [106] to test load-carrying capacity and 
bearing clearance, and the results were compared to data 
from theoretical model simulations. According to Andres 
et al. [103], the breakaway torque has grown with the 
rotor's speeds during start-up and lift-off and also with the 
rise in the external load. In order to benchmark the results 
from theoretical analysis, Lee et al. [79] and [103] 
conducted load-deflection tests, rotor constant-speed tests, 
and coast-down tests. They also assessed transient 
temperature values. They also noticed that the stiffness 
values increased as well when the density of the metal 
mesh rose. When compared to older, bump-type PATBs, 
the new bore PATB (with metal mesh compliant) exhibits 
better damping properties. Among other tests, Andres and 
Chirathadam [103] carried out a load-deflection test, a 
coast-up and coast-down test, and a dynamic shaker test. 
The foil metal mesh bearing has exhibited less frictional 
power and airborne torque, more energy dissipation, and 
an earlier lift-off speed than the traditional bump-type 
PATB. PATB with several leaves that is compliant was 
studied by Tian et al. [31] and found to have essentially 
consistent BDCs over the perturbation frequency range. 
Electronic actuators have been employed by Feng et al. [68] 
to adjust the bore geometry. The driving actuator voltage 
has grown along with the airborne drag torque. Guan et al. 
[108] noted that the piezoelectric actuators' supply voltage 
might be adjusted to reduce sub-synchronous vibrations. 
According to Hu et al. [109], the bump-type shim foil-
supported new bore-compliant PATB has produced a 
smaller rotor orbit (with less vibration in both directions) 
than a traditional bump-type PATB. In comparison to 
traditional bump-type PATBs, the rotor supported on the 

innovative bore bearing exhibits significantly reduced sub-
synchronous vibrations, according to Liu et al. [91]. By 
adding dampening, the metal mesh blocks' enhanced mesh 
density has resulted in less sub-synchronous vibration 
amplitudes. However, thorough three-dimensional 
numerical formulations for the operation of bump-type 
refrigerant-lubricated journal bearings have been 
introduced, and the tribo-dynamics of these kinds of 
bearings have been studied by the authors [110]. These 
formulations incorporate thermal, eddy viscosity, 
turbulence effects, and vapour/liquid transition. 

Conclusions and Future Scope: 

It is well acknowledged that research is being 
conducted worldwide to investigate and enhance the load-
carrying capacity, rotor dynamics, and tribological 
performances accompanied by compliant and rigid bore 
PATBs. Additionally, it has been shown that operations at 
low eccentricity ratios make the rotors sustained by rigid 
bore PATBs susceptible to dynamic instabilities. Based on 
the review of the literature on porous 
thrust aerostatic journal bearings provided in this article, 
the key points observed from the literature review are 
listed below: 

• When determining the tribo-dynamic performance of 
PATBs, factors such as bearing bore geometry, 
operating circumstances, and clearance are crucial. 

• Many unique compliant bore geometries that provide 
compliance throughout the operations have been 
proposed in previous research. 

• Furthermore, the clearance change caused by the 
thermal expansion of bearing parts has been taken into 
consideration in the design of PATBs. 

• However, limited numbers of literatures can be found 
on the tribological and experimental investigations of 
novel aerostatic journal bearings. 

• When employing PATBs, self-excited sub-synchronous 
rotor vibrations and nonlinear dynamic performance 
are perceived.  

• The tribological experimental investigations of novel 
PATBs are understudied. 

• The ability to carry higher load for long time is 
improved by the increase in air viscosity that occurs 
when the ambient temperature rises.  

• The capacity to carry the loads is negatively impacted 
by rarefaction, which is further encouraged by a rise in 
the ambient temperature. 

There is a need for more investigation into how to use 
surface texture technologies to minimise friction and wear. 
It is necessary to conduct experimental research on the 
newly described compliant bore geometries to comprehend 
the tribological behaviours under various operating 
conditions. Compliant bore bearings/ conical aerodynamic 
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rigid, which can handle both radial and axial thrust 
simultaneously, have not been the subject of any study. To 
determine its feasibility, thorough research is needed. 
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