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NOMENCLATURE 

Fs Shaft Rotational Frequency Pd Pitch diameter (mm) 

Nb No. of  balls θ contact angle in degree 

Bd Ball diameter (mm)   

1. INTRODUCTION1 

Rolling element bearings find widespread use in various 
rotating machinery applications. The failure of ball bearings 
stands as a primary cause for breakdowns in rotating 
machinery. To avoid prevent these kinds of failures, there are 
various condition monitoring techniques have been 
developed. Ball bearings are used nearly 90% of all rotating 
machinery [1]. Ball bearings are widely employed across 
various rotating machinery applications, with bearing failure 
representing a main cause to the breakdown of such 
machinery [2-3]. Bearing faults account for 44% of motor 
breakdowns in the industry [4]. Several condition 
monitoring techniques exist to prevent bearing failures, 
including vibration monitoring, acoustic emission, wear 
debris detection, and thermography. Among these methods, 
vibration analysis stands as a widely utilized approach for 
detecting bearing faults [5-8]. Local defects in ball bearing 
contain pits, cracks and spalls on the rolling surfaces. The 
predominant failure mode seen in rolling element bearings 

 

 

is the occurrence of spalling in the inner and outer races or 
within the rolling elements. The spalling is caused by fatigue 
[9-12]. Patel et al. [13] reported that fatigue causes local 
defects on mating bearing components, such as spalls, pits, 
and fractures. Dents, scratches, fretting, spalling, incorrect 
fittings, and holes in the raceways are repeated kinds of 
bearing faults discussed [14–17]. Data-driven techniques, 
including machine learning and statistical analysis, are 
commonly used to develop predictive models based on 
historical data from similar bearings. These models can then 
be used to predict the remaining life of a bearing under 
current operating conditions. It's important to note that 
accurately predicting RUL can be challenging due to the 
complex and dynamic nature of mechanical systems. Factors 
such as variations in operating conditions, manufacturing 
quality, and environmental factors can impact the accuracy 
of RUL predictions. Therefore, RUL estimates are often 
accompanied by uncertainty ranges to provide a better 
understanding of the potential variability in the predictions. 
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ABSTRACT 

Fault diagnosis of rolling element bearings is a critical aspect of machine maintenance and reliability. Bearings 
are extensively used in various industrial applications, and their failure can lead to costly downtime and equipment 
damage. Rotating machinery under continuous overload conditions can indeed significantly degrade bearing life 
and lead to various other issues. To identify issues in rolling element bearings (REB), several techniques and methods 
are employed. Diagnosing faults in ball bearings while simultaneously estimating the Remaining Useful Life (RUL) 
of the bearing is a crucial aspect of predictive maintenance. This can be achieved through a combination of signal 
processing techniques, machine learning methods, and RUL prediction models. The estimation of a bearing 
Remaining Useful Life (RUL) is of significant importance in predictive maintenance strategies to avoid unexpected 
failures, reduce downtime, and optimize maintenance costs. This literature review aims to explore the 
methodologies, techniques, and advancements in predicting the remaining useful life of bearings.  
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2. DEFECTS IN BEARINGS

Premature bearing failures can be produced by a variety
of factors, such as fatigue, plastic deformation, wear,
brinelling, inadequate lubrication, improper installation,
corrosion and flawed design. Recognizing these issues and
the vibrations they generate is crucial for effectively
monitoring the condition of bearings. These defects generally
divided into two types: distributed defects and localized
defects. Figure 1 shows the defects in ball bearing
components.

 2.1. Distributed Defects

It involves surface roughness, waviness and off-size
rolling elements, misaligned races[18, 19]. Variations in the
contact force between raceways and rolling elements within
these flaws result in vibrations. The vibration response from
distributed defects is primarily employed for quality
inspection and the ongoing monitoring of bearing
conditions.

2.2. Localized Defects

This group of defects covers spalls, pits and cracks which
can progress across the rolling surfaces. Mostly, spalling
stands out as the primary mode of failure. Typically, a
fatigue crack initiates beneath the surface and progresses
towards it until the material gives way, resulting in localized
defects. According to Bentley [20], approximately 90% of all
bearing faults involve damage to the rolling elements, outer
race, inner race, and cage due to these localized defects.

A rolling-element bearing, comprises four primary
components: (i) ball, alternatively known as the roller or ball
(ii) Outer race (iii) Inner race (iv) Cage. Faults can occur on
these components, as depicted in Figure 1, or may even
present as general damage affecting the entire device.

3. BEARINGS FAULT DIAGNOSIS USING
SIGNAL PROCESSING TECHNIQUES

The vibration signal produced by the defective bearing
can be analyzed in the time domain, frequency domain, or
both time- frequency domains (Figure 2).

 

 

Figure 1. Ball bearing component defects [104] 

 

 

 

Figure 2.  Signal processing techniques 

3.1. Time Domain  

Time domain techniques rely on the statistical 
characteristics of the signal waveform over time. Root Mean 
Square (RMS) value [12, 15], Kurtosis [15, 16], Peak value [15] 
Crest Factor [15], and synchronous averaging [17] 
parameters are carried out by researchers. Rafsanjani et al.  
[21] presented an analytical model for ball bearings featuring 
localized defects on the outer race, inner race and ball. They 
reported that the utility of this model for design, machine 
condition monitoring and predictive maintenance. Karacay 
and Akturk [22] highlighted that many researchers have 
investigated ball bearing defects both theoretically and 
experimentally, examining their impact on vibration levels 
through scalar parameters like Root Mean Square (RMS), pk-
pk value, kurtosis and crest factor. Wang and team [23] 
presented the adaptive spectral kurtosis for detecting 
multiple faults in single row ball bearings. They developed a 
theoretical model for multiple bearing faults and 
demonstrated that their method could efficiently extract 
features of multiple bearing faults, especially in the presence 
of substantial background noise, outperforming techniques 
such as the Krtogram and Protrugram. 

3.2. Frequency Domain Approach 

The predominant method for diagnosing faults in 
bearings is through frequency domain. Vibration signals in 
the time domain are converted into discrete frequency 
components by using a Fast Fourier Transform (FFT). 

The bearing characteristic frequency is depending upon 
both the bearing geometry and the specific type of bearing 
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defect present. 

The following equation gives the frequencies that 
correspond to characteristic faults. 

BPFI (Ball pass frequency-Inner)  
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Abu-Zeid and Abdel-Rahman [24] investigated faulty 
bearings and observed that they produce elevated vibrations 
at higher frequencies, along with increased energy 
consumption. Various researchers have utilized different 
parameters of vibration signals to analyze bearing faults. The 
FFT spectrum insights into the types of defects present. 
Researcher conducted an experiment on ball bearing using 
FFT spectrum analysis to predict the locations of faults. Kiral 
and Karagülle [25] introduced dynamic loading models 
within the finite element method for both sound and 
defective single row ball bearings. They explored the impact 
of rotational speed on the diagnosis of rolling element 
bearings. They found that both time and frequency domain 
techniques are responsive to alterations in rotational speeds, 
impacting diagnostic accuracy. Choy and colleagues [26] 
investigated vibration associated with defective ball 
bearings. They explored various analysis methods, including 
time domain averaging, frequency component averaging, 
and modified Poincare maps. They observed average time 
signal technique did not distinctly elucidate information 
about faulty bearings. In contrast, modified Poincare map 
and average frequency component and techniques offered 
clearer insights into the nature of the faulty bearing. Feiyun 
Cong et al. [27] analyzed dynamic load of the rotor bearing 
system through a fault model for rolling bearings. The rotor 
bearing vibration model was analyzed by integrating 
dynamic responses with the formulation of fault signals 
unique to rolling element bearings. Minmin Xu et al. [28] 
verified how the increase in internal radial clearance in 
bearing excites the envelope spectrum in BPFO and it has 
been further noticed that with introduced gear spalling 
exceeds the amplitude of BPFO. Tabasi et al. [29] used 
frequency domain for bearing fault diagnosis of induction 
motor. They reported that the temperature and load changes 
have minimal effect on the magnitudes of the frequency 
indicators. 

 

 

3.3. Time-Frequency Domain 

 Time-frequency techniques possess the capability to 
depict machinery fault patterns in both time and frequency 
domains, especially when dealing with non-stationary 
signals. Several researchers were used STFT, Wavelet 
transform, Hilbert Transform for fault diagnosis of bearing.  

Qiu [30] employed two denoising-based methods: 
wavelet decomposition-based and wavelet filter-based 
approaches. He concluded that the wavelet filter-based 
approach is more effective for detecting weak signals. Wang 
and Gao [31] utilized a combination of fast Fourier transform 
and wavelet transforms to improve feature extraction for 
enhanced analysis. Junsheng [32] introduced scale wavelet 
power spectrum comparison and auto-correlation analysis as 
methods for time-wavelet power assessment. Nikolaou and 
Antoniadis [33] presented a wavelet packet transform (WPT) 
for single row ball bearing faults. They showed WPT is an 
effective method for identifying the nature of ball bearing 
faults. Kumar et al.[34] presented the application of the 
Symlet wavelet for signal decomposition aimed at extracting 
the fault size on the outer race of a taper roller bearing. 
Kankar et al. [35-38] used wavelet transform (WT) and 
statistical features for a single row ball bearing fault 
diagnosis. Additionally, artificial neural networks (ANN), 
self-organizing maps (SOM), and support vector machines 
(SVM) were employed for fault classifications. They 
observed that the SVM exhibited superior diagnostic 
performance compared to both SOM and ANN. The Short-
Time Fourier Transform (STFT), Hilbert Transform (HT), 
discrete and continuous Wavelet Transform (WT), along 
with envelope analysis, are frequently employed methods 
for feature extraction [39–42]. Han et al. [43] proposed the 
frequency domain sparse optimization algorithm for bearing 
fault finding, sparse representation has proved to be a 
promising technique to extract the repetitive transient 
component from noisy signals. A non-convex penalty called 
generalized logarithm (G-log) penalty which increases the 
sparsity and reduces noise disturbance has been suggested 
by Ziwei Zhang et al. [44]. Rubén Medina et al. [45] employed 
Peaks detection and Poincaré plot for cardiac 
electrocardiographic signal analysis novel method for 
detection of gear and bearing faults and SVM has been 
adopted for fault classification. The Poincaré method is a 
methodological tool which was used for analyzing the non-
linear dynamics of systems has a chaotic behavior. Xu et al. 
[46] used conventional envelope analysis and time-domain 
parameters, such as RMS and kurtosis for bearing fault 
diagnosis. Cherif et al. [47] proposed two approaches such as 
Hilbert spectral envelope and machine learning based on 
random forests. Using extracted frequency characteristics as 
innovative features for bearing fault detection, along with 
automated localization of the faulty component, achieved a 
remarkable classification rate of 99.94%. Patel and Giri [48] 
proposed bearing damage index (BDI) for condition 
monitoring of ball bearing. They used. Fast Fourier 
Transform (FFT) and Hilbert transform (HT) has been carried 
out in order to identify the inner raceway fault (IRF), outer 
raceway faults. Zuhua Jiang et al. [49] suggested a time-
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frequency spectral amplitude modulation technique has
been adopted and obtain amplitudes in the time-frequency
domain through the short-time Fourier transform and
adjusting them with various weights enables the extraction
of more precise and detailed information regarding
amplitudes, facilitating a more insightful interpretation of
bearing faults.  Dezun Zhao et al. [50] suggested compound
fault diagnosis has been carried out by generalized
demodulation (GD) algorithm. The generalized
demodulation algorithm is a signal processing approach
which has been successfully applied to amplitude-
modulated and frequency-modulated signals processing
under variable speed conditions. Tianyang Wang et al. [51]
applied Rapid spectral kurtosis (SK) analysis in conjunction
with the short time Fourier transform (STFT) results in a
time-frequency representation (TFR) of the filtered signal,
featuring distinct fault-revealing trend lines. This enables the
extraction of instantaneous fault characteristic frequency
(IFCF) from the TFR. IFCF to convert the non-stationary
time-domain signal into the stationary fault phase angle
(FPA) domain signal which transform into the fault
characteristic order (FCO) for identification of fault.
Ensemble empirical mode decomposition (EEMD) method
decomposed vibration signal into intrinsic mode functions
(IMF) has been used by Khaire and Phalle [52] in its literature
and adopted principal component analysis (PCA) technique
to effectively extracted faulty signals. Hongfeng Tao et al.
[53] introduced an unsupervised time-frequency
information approach for diagnosing bearing faults. They
employed wavelet packet decomposition (WPD) for
handling non-stationary signals, and utilized a convolutional
network with parameter sharing to extract deep features
relevant to bearing faults. Qiuyu Song and team [54]
proposed a multichannel mode extraction (SMME) technique
for diagnosing bearing faults. Additionally, they introduced
multichannel single-step decomposition (MSD) facilitated by
the detected Center Frequencies to directly acquire the
corresponding modes across all channels.

4. BEARING FAULT DIAGNOSIS USING
MACHINE LEARNING TECHNIQUES

In recent decades, crucial machine learning models like
Support Vector Machines (SVM), k- Nearest Neighbors
(KNN), and Convolutional Neural Networks (CNN) have
experienced substantial enhancements in the field of bearing
fault diagnosis. A concise overview of the primary classical
machine learning method in applications related to bearing
fault diagnosis will be provided.

4. 1. Support Vector Machine (SVM)

 Support Vector Machines (SVMs) are renowned for their
capability to manage high-dimensional data and determine
the optimal hyperplane, maximizing the margin between
classes, a beneficial trait for fault diagnosis tasks.
Nevertheless, their performance is notably affected by the
selection of kernel and hyperparameters, underscoring the
critical importance of parameter tuning and feature selection
in the overall process. The SVM separates data of one class

from another by identifying the optimal hyperplane that 
maximizes the margin width between different classes. 
Expanding the margin width can alleviate the issue of 
overlap between different classes. Generally, margins come 
in two forms: soft and hard. For this research, a soft margin 
was preferred due to the nonlinear nature of the bearing fault 
diagnosis, which posed a classification problem. The 
accuracy of SVM mainly depends on the choice of data 
collection, kernel function, the threshold function, and the 
cost parameter (C). 

SVM classifier Li et al. [55], Wu et al. [63], Josue Pacheco-
Cherrez et al. [67] used Kernel functions (linear, nonlinear, 
polynomial, RBF and sigmoid) to manipulate the data. A 
kernel function helps to transform training dataset to 
facilitate the transformation of a non-linear decision 
boundary into a linear equation.  

The regularization parameters used by researchers to 
control model complexity and overfitting. The choice of 
regularization parameter allows researchers to fine-tune the 
SVM model and optimize the solution. Xin Li et al. [55] 
adopted Least Square Support Vector Machine (LS-SVM) to 
extract the features. Deep stacking LS-SVM (DSLS-SVM) 
ensemble learning model employed to intrinsic rolling 
bearing fault features from raw vibration signals. DSLS-SVM 
can autonomously identify and extract relevant features 
from original signals. LS-SVM used to replace inequality 
constraints to equality constraints by minimizing the least 
square errors and margins errors. Stacking-based 
representation learning (S-RL) contributes to extend shallow 
model to deep learning model through modularization. 
DSLS-SVM trained each binary LS-SVM separately without 
iteration by one-against-all strategy. Similarly, some 
researchers Zhu et al. [59], Tang et al. [105] adopted multi-
class SVM classifier to evaluate the complication of the 
bearing signal effectively [59] and extracted 20 features by 
multiple class feature selection approach and optimized 
features have been trained and tested for multi-class SVM 
classifier. Strategy likes ‘one against one’ or ‘one against rest’ 
has been used for multi-class classification. Tang et al. [105] 
adopted empirical mode decomposition and auto regression 
to extract feature. They applied multi-class SVM for 
Classification and wavelet decomposition technique based 
support vector machine for fault prediction. SVM classifier 
also employed to predict RUL of bearing by the researcher 
[61]. Relative root mean square [RRMS] has been used as 
input to SVM to predict the degradation rate of bearing. 

4. 2. K-Nearest Neighbor (k-NN) Algorithm  

The k-NN is a robust and non-parametric learning 
method applicable to solve classification as well as 
regression problems. Instead of examining a discriminative 
function, this algorithm memorizes the training dataset. 
Memorizing the training sets helps in steering clear of errors. 
The non-parametric aspect of the model is not 
predetermined and varies based on the sample size. 
Challenges of k-NN encompass its substantial memory 
usage, extended forecast time, and extreme sensitivity to 
unrelated features. It utilizes the k-nearest training samples 
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in proximity to the test results to perform data classification.
k-NN primarily relies on 2 key factors: 1st a distance metric
to measure the distance between 2 points, 2nd the parameter
"k" which determines the no. of neighbors. “k” value
determines the shape of the decision boundary. Increasing
the "k" value during the neighbor selection process leads to a
smoother boundary. Lower k values technically establish a
hard boundary state, contributing for precise match with low
bias and high variance.

K-Nearest Neighbor [KNN] performs classification
through the numbered neighboring samples by calculating
Euclidean distance Yan et al.[57], Gunerkar et al. [58], Mehta
et al. [60], and Syed Muhammad et al.[88] between the
dataset points. Distance between test object xi and each
sample xj from training set by equation 1. p denotes the
number of features.

2

ip jp

2

j2i2

2

j1i1 )x-(x+...+)x-(x+)x- (x=d        (1) 

KNN can easily classify faults for inner race and outer 
race in one class and classifier also separate combined faults 
from kernel boundaries. So, it cannot be classified into single 
class. 

4.3. Convolutional Neural Network (CNN) 
Algorithm  

The deep learning architectures include de-noising 
autoencoders, deep belief networks, and convolutional 
neural networks (CNN). CNN is used in health monitoring 
of rotating machines and bearings. Although CNN are 
commonly categorized as a machine learning technique, they 
actually fall under the subclass of artificial intelligence (AI). 
Both supervised and unsupervised algorithms can be 
employed on the network. In other words, the network 
comprises multiple layers, each containing hidden layers 
responsible for processing and learning from the input data. 
A CNN was selected among various architectures due to its 
benefits, including shift-variance, weight sharing, highly 
accurate, and encoding capabilities. 

Li et al. [55] applied a deep stacking least squares SVM 
for diagnosing faults in rolling bearings. Khodja et al. [56] 
applied convolutional neural networks (CNN) and vibration 
spectrum imaging for fault diagnosis of ball bearing. Yan et 
al. [57] determine instantaneous energy distribution 
permutation entropy IDEPE of the vibration signal and 
classify bearing fault through KNN algorithm. Gunerkar et 
al. [58] proposed artificial neural network (ANN) for 
diagnosis fault of rolling element bearing.  

Zhu et al. [59] employed multi-scale global fuzzy entropy, 
multiple class feature selection, and SVM for diagnosing 
faults in rolling element bearings. Mehta et al. [60] employed 
KNN, linear discriminant analysis, and SVM as classifiers, 
and subsequently conducted a performance comparison 
among all three classifiers. Yan [61] et al. suggested a method 
to classify bearing degradation states through SVM. Su et al. 
[62] applied SVM for health monitoring and fault finding of 
machine. Wu et al. [63] utilized a bearing fault diagnosis 
technique employing a support vector machine based on 

kernel matrix construction. Data-driven technologies are 
gaining prominence due to the rising popularity of 
automation and the ease of data acquisition. These 
technologies heavily rely on artificial intelligence and 
machine learning to diagnose issues through extensive 
analysis and learning from large volumes of data [64, 65]. 
Hui wang et al. [66] employed Digital Twin (DT) based 
modified simulation model by the Pearson correlation 
coefficient (PCC) which is a kind of model online learning. 
The machine learning techniques has been adopted to 
predict the probability of faults which can be experimentally 
verified by the researcher and it has been observed that 
diagnosis accuracy improves significantly. Josue Pacheco-
Cherrez et al. [67] utilized vibration and acoustic signals and 
varied the accuracy by ML methods. applied Neighborhood 
component analysis (NCA) method which maximizing the 
prediction accuracy of regression and classification 
algorithms for predicting faults in wind turbine bearing has 
been applied by Bodi Cui et al. [68]. Self-Supervised Learning 
and Sparse Filtering (GSLSF) method effective with minimal 
training samples suggested by Guocai Nie et al. [69]. The 
valuable information obtained through pre-training is 
utilized in sparse filtering for feature extraction, enhancing 
the model's generalization performance. Additionally, 
softmax regression is applied to differentiate and classify 
different types of failures. Yassine Toumi et al. [70] employed 
envelope analysis method for feature extraction and multi-
layer perceptron (MLP) to classify the faulty condition. 
Proposed architecture is implemented on the field 
programmable gate arrays (FPGA) which effectively check 
the severity of faults. Feng He [71] adopted combination of 
wavelet packet transform, convolutional neural network 
(CNN) and the simulated annealing algorithm. The 
effectiveness of algorithm has been compared with 
traditional algorithms. Heidari [72] used Rule-based 
Classifier Ensemble and Genetic Algorithm for fault 
diagnosis of bearing. They reported that the accuracy of 
classifier was 98.44%. Attaran et al. [73] presented a novel 
technique artificial neural network learning for localized 
faults diagnosis in anti-friction bearings, the results show 
that the suggested method has 100% accuracy.   

Overview for accuracy of the various ML Techniques for 
bearing faults is shown in Table.1 

5. REMAINING USEFUL LIFE (RUL) OF 
BEARING 

Predicting the RUL of a bearing is crucial for maintenance 
and reliability management in various industries, including 
manufacturing, aviation, automotive, and more. Predicting 
the Remaining Useful Life (RUL) of bearings, advanced 
techniques most likely machine learning and statistical 
algorithms contribute significantly. These algorithms 
analyze historical data, sensor readings, and other relevant 
information to estimate when a bearing is likely to fail or 
need maintenance. Some algorithms for RUL prediction of 
bearings are discussed. 

Zhang et al. [74] tackled the Remaining Useful Life (RUL) 
prediction challenge by employing a multi-objective deep  
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Table 1: Overview for accuracy of the various ML Techniques for bearing faults

References 
Data 

Operations/Processing 
ML Techniques Results Summary 

Li et al [55] 
Standard Deviation 
(SD) 

Deep Stacking SL - 
SVM 

Accuracy 99.85 % fault 
diagnosis 

DSLS-SVM has good 
effectiveness and 
applicability in rolling 
bearing fault diagnosis 

Youcef Khodja 
et al. [56] 

SNR 4 db to 10 db CNN 
Accuracy 99.62 % fault 
diagnosis 

CNN provides good 
classification accuracy and 
with robustness to 10 db 
SNR added noise. 

Yan et al. [57] 

Improved Variational 
Mode Decomposition, 
Entropy, 3D 
eigenvector 

KNN 
Accuracy 100 % for similar 
fault and 98.38 for Fault 
Variation 

Capable of extracting 
accurately fault features and 
distinguish availably multi-
class fault patterns. 

Gunerkar et al. 
[58] 

Peak, SD ANN, KNN 

Accuracy 99 % success for 
classifying outer, inner 
race and Combined fault 
class and 100 % for all fault 
class. 

The results obtained from 
ANN are compared with 
KNN, ANN results proved 
to be highly effective for 
classification of multiple 
faults. 

Mehta et al.[60], 
Mingming Yan 
et al. [61] 

SD, entropy, kurtosis, 
skewness, and energy 

LDA, KNN, SVM 

Accuracy achieved 88.9 % 
and 100% by Mehta. 

Yan achieved Max. 
Accuracy of 92.99 % 
obtained by using SVM 

Fault classification was 
done by using three 
classifiers, namely, LDA, 
KNN, and SVM among 
which SVM outperformed. 

Wu C.X et al. 
[63] 

CWT, SVD 
kernel matrix based 
SVM 

Max. accuracy with 
combination of faults with 
5 fold cross validation is 
99.87 % 

KMC-SVM shows higher 
accuracy while predicting 
faults location and Severity 
in REB Defects. 

Pacheco-
Chérrez et al. 
[67] 

SD, skewness, kurtosis, 
Petrosian fractal 
dimension, fisher 
information ratio and 
entropy 

SVM, PCA, LDA 

LDA based on Acoustic 
and Vibration signals 
gives more than 98 % 
frequency compared to 
SVM and PCA with 
accuracy around 96.66 % 

Classification has been done 
between various ML 
methods. 21 statistical 
features obtained from time 
domain signals which used 
in LDA. 

Bodi Cui et al. 
[68] 

Neighborhood 
Component Analysis, 

SVM, Naive Bayes, 
KNN, ANN 

KNN method achieved a 
good performance with 
classification rate above 
90% and Naive Bayes 
method is relatively poor, 
below 70%. 

Wind turbine bearings, the 
piece-wise properties data 
and regression data a three-
stage learning algorithm 
used to extract significant 
information to predict 
bearing faults. 

Guocai Nie et al. 
[69] 

Sparse filtering, 
Stacked Auto-encoder, 
SRC 

self-supervised 
learning 
and sparse filtering 
(GSLSF), softmax 
regression 

Accuracy more than 97% 
achieved by the proposed 
method 

Self-define supervised 
learning and sparse filtering 
two stages used to extract 
fault features; softmax 
regression has been 
employed to separate the 
type fault. 

Toumi Y et al. 
[70] 

Envelope Analysis, 
Multi-layer Perceptron 

ANN Accuracy of 95 and 89% 
for the fault-type 

A bearing state signature 
extraction through envelope 

33 TRIBOLOGIA - Finnish Journal of Tribology 1−2 vol 41/2024

R. V. Bhandare et al. Fault Diagnosis and Prediction of Remaining Useful Life (RUL)

of Rolling Element Bearing : A review state of art2

ip jp



R. V. Bhandare et al. Fault Diagnosis and Prediction of Remaining Useful Life (RUL) 

of Rolling Element Bearing : A review state of art

identification and fault-
severity identification 

analysis and reliable 
decision-making using a 
multi-layer perceptron 
(MLP) to classify the 
bearing fault condition. 

He F. et al. [71] WPT 
CNN, SVM, BP 
neural network 

Accuracy more than 97% 
achieved by the optimized 
CNN Algorithm 

WPT and convolutional 
neural network optimized 
by a simulated annealing 
algorithm has given higher 
accuracy than traditional 
fault diagnosis methods. 

Heidari et al. 
[72] 

Shape factor, impulse 
factor, crest factor, 
clearance indicator, 
skewness, and kurtosis 

Ensemble classifier, 
Genetic Algorithm 

accuracy around 98.44% 
achieved 

Ensemble Techniques give a 
better prediction of fault of 
bearings 

 

belief network (DBN) ensemble method. They integrated an 
evolutionary approach within the DBN to enhance forecast 
performance, achieving promising results in the aero-
engine prognostic study. Li et al. [75] suggested a deep 
convolutional neural network (CNN) into the prognostic 
task. The minimal errors in small Remaining Useful Life 
(RUL) estimation indicate that CNN effectively captures 
system degradation info from Vibration data [76-77]. Xu et 
al. [78] employed novel approach, integrating a multi-scale 
CNN and an attention mechanism method using multi-
sensor signals for predicting the RUL. Lin Zuo et al. [79] has 
proposed spiking neural network (SNN), SNN has been 
promoted to identify the bearing faults by entering the 
probability sequences of the extracted features. Local mean 
decomposition (LMD) method converts raw vibration 
signals into pulse sequence input as input for SNN. SNN 
and LMD in combination shows significant accuracy when 
compared with ANN and CNN algorithm. Zhenzhen Jin 
[80] used variational mode decomposition (VMD) and 
improved convolutional neural network (ICNN), VMD is 
adopted to decompose the signal and calculate the 
correlation coefficient between every component and the 
original signal. Researcher début dropout and batch 
normalization to optimize the CNN structure which 
considerably advances the accuracy of result.  

Many researchers have applied Deep Learning 
technologies, such as deep convolutional neural networks 
(CNNs) [81, 82], auto-encoder [83] residual networks 
(ResNets) [84], LSTM neural networks [85] and 
transformers [86] for RUL prediction. DL-based methods 
are extensively applied in predicting the Remaining Useful 
Life (RUL) of anti-friction bearings. Notably, CNN 
leverages convolution operations as its core, incorporating 

sparse connections and weight sharing to reduce the 
parameters needing training, thus easing the computational 
load. Recently, deep neural networks have been utilized for 
estimating the RUL of bearings [87]. The k-nearest neighbor 
algorithm was applied for the detection of bearing and gear 
faults and classification for enhance accuracy. Extracting 
time-domain features through vibration analysis utilized in 
the fault classification process [88]. Multilayer perceptron 
(MLP) and SVM algorithms were applied to analyze 
centrifugal pump seal leakages. The author utilized 
accelerometer for collecting data from the commissioning 
location spanning 4 years. The SVM technique achieved a 
max accuracy of 98.1 percent, while the MLP attained an 
accuracy of 98.2 percent [89]. Yang et al. [90] introduced a 
dual CNN approach, first model designed to identify the 
initiation fault point and the second model to predict the 
Remaining Useful Life. An encoder-decoder based 
recurrent neural network is used by Chen et al. [91] to 
derive the health index values without thresholding. The 
final RUL is predicted using linear regression. Wang et al. 
[92] proposed systematic prognostics framework named 
recurrent convolutional neural network (RCNN) for 
forecasting RUL of rolling element bearing (milling cutter). 
Deutsch et al. [93] provides an Integrated Deep Learning 
and Particle Filter Approach  for bearing RUL. Zeng et al. 
[94] proposed online transfer learning approach to estimate 
bearing RUL. Sharanya et al. [95] used Reduced Affinity 
Propagated (RAP) clustering algorithm for lasting useful 
life of bearing. Lee et al. [96] proposed a systematic feature 
engineering (SFE) and extreme learning machine (ELM) 
based RUL assessment technique. Wang et al. [97] used 
fusion  
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Table 2: Overview for estimation of remaining useful life (RUL) of the bearings using various techniques

References 
Data 
Operations/Pr
ocessing 

ML Techniques Results Summary 

Attaran et al. 
[74] 

RMSE 
Ensemble Learning, 
Deep Belief 
Networks 

RMSE is less and prognostics 
heath management score better 
by proposed method for 
training and test dataset 

DBNs optimized the weights to 
establish an ensemble model for 
RUL estimation 

Pham et al. 
[77] 

STFT CNN-VGG16 
Max. accuracy 99.83% has been 
achieved by this method for 
both combined and single fault 

spectrograms of vibration 
acceleration signals have been 
processed by STFT and CNN -
VGG16 algorithm used to identify 
and b classify the faults 

Giduthuri 
Sateesh Babu 
et al. [81] 

RMSE 
CNN,SVR, RVR, 
MLP 

Compare to other algorithm 
CNN got least mean square 
error. Similarly, CNN achieved 
lower (better) score values than 
the MLP, SVR and RVR on 
multi operating condition 
data sets. 

CNN based RUL estimation from 
multivariate time series data 
studied by researcher. 

Jian Ma et al. 
[83] 

SAE, Grid 
search method 

Logistic regression, 
DNN 

DNN hyper parameters using 
a grid search shows 
effectiveness with accuracy 
83.82% 

A deep learning approach has been 
employed to predict the RUL of an 
aircraft engine based on a stacked 
sparse auto-encoder and logistic 
regression. 

long Wen et 
al. [84] SD 

CNN,SVM, DBN, 
LSTMM 

Ensemble techniques has 
higher accuracy than other ML 
techniques 

k-fold ensemble method used to 
enhance Res CNN has shown 
significantly predict RUL of bearing 

Yuting Wu et 
al. [85] 

Stochastic 
Gradient 
Descent 
(SGD), RMS 
prop. or Adam 

RNN 

Standard RNN, GRU LTSM 
and vanilla LTSM algorithm 
has compared and Vanilla 
LSTM shows 100 times better 
scoring functions than other 
algorithm 

Vanilla LSTM achieved the best 
prediction accuracy at most of the 
monitoring points 

Yifei Ding et 
al. [86] 

RMSE, MSE, 
Score function 

RNN, 
Convolutional 
Transformer, CNN 

CoT shows good prediction 
compared to CNN and RNN 
on parameters like RMSE, MSE 
and Score Function for 
Predicting RUL of bearing 

convolutional Transformer can be 
employed in three modes:  encoder-
only; decoder-only and encoder–
decoder is good at capturing 
content-based 
global interactions compared to 
RNN and CNN 

Syed 
Muhammad 
et al.[88] 

Root means 
square, 
Impulse, 
Kurtosis and 
Shape Factor 

KNN, GA, SVM 

K-values from 1 to 10 with step 
1 has been applied with GA 
selected only 04 features (root 
means square, impulse, 
kurtosis and Shape Factor). At 
k values in between 2-9 shows 
100 % accuracy. 

KNN with GA diagnosis defect in 
bearing and gears from vibration 
signals 

Pier 
Francesco et 
al. [89] 

Statistical 
Features 

SVM, MLP 

Overall accuracy of 98.2% has 
been achieved by MLP and 
SVM achieved 98.1 % accuracy. 
MLP for Fault estimation.  

MLP predicted Fault estimation. 
 

Boyuan RMSE, CRA CNN, SVR RMSE and Cumulative relative A double-CNN framework for 
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Yang et al. 
[90] 

accuracy (CRA) are used as 
prediction index, Zero and One 
indicates in results as normal 
and degradation stage. CNN 
gives higher accuracy than 
SVR around 1. 

Rapid degradation to identify If 
point based on 3/5 principle shows 
the effectiveness of prediction of 
RUL compared to SVR. 

B. Wang et 
al. [92] Mean, SD 

SVM, FNN, DBN, 
CNN, CBLSTM, 
RCNN 

Accuracy of RCNN more than 
86% has been achieved. 

RCNN can provide a better RUL 
prediction compare to other Ml 
techniques. 

Fuchuan 
Zeng et al. 
[94] RMSE, CRA 

DCNN, DANN, 
MK-MMD 

RMSE and CRA are low and 
high respectively by suggested 
method compared to DCNN 
and DANN 

Maximum mean discrepancies-
based (MK-MMD) transfer learning 
method obtaining the most effective 
average forecasting accuracy and 
lowest variance. 

Sharanya et 
al.[95] 

k factor, 
crest factor 

Reduced affinity 
propagated (RAP) 
clustering 

RAP has average error 
estimates was 6.04 

Reduced affinity propagated (RAP) 
clustering used to classify the health 
condition of the equipment under 
study by constructing health metric 
from the predicted RUL. 

Lee et al. [96] RMS 
Extreme Learning 
Machine (ELM) 

ELM reduces MAE, RMSE and 
MAPE in RUL estimation by 
over 50% 

Proposed a novel RUL estimation 
method based on systematic feature 
engineering and extreme learning 
machine (ELM). 

Ren et 
al.[100], 
Gupta et 
al.[99] 

Spectrum-
Principal-
Energy-Vector 

DCNN 
Prediction accuracy was 
0.1190. 

Deep CNN improved the 
prediction accuracy 

Ren et 
al.[101] 

Time domain 
and frequency 
domain 

Deep Learning 
Approach 

Average RMSE on different 
testing datasets is 0.0414 

The effectiveness of deep neural 
network for multi-bearing 
remaining useful life prediction 
was promising 

Cheng et 
al.[102] 

Degradation 
energy 
indicator 

deep CNN 

Average score mean = 0.87, 
Mean average error MAE = 
46.2, and Normalized Root 
Mean Square Error 
NRMSE=0.05 

The proposed framework achieves 
much smaller prediction errors for 
RUL predictions 

 

prognostics method for forecasting RUL of rolling element 
bearings (REB). Meta-learning algorithm is anticipated to 
categorize bearing faults under various conditions with less 
training samples. The meta-learning has capability to do 
classification, regression, and reinforcement learning, with 
less sample size. Neural network model has been employed 
by meta-learning as base and it take complete gain to feature-
extracted capacity of same for bearing faults has been 
suggested by Hao Su et al. [98]. Muktesh Gupta et al. [99] 
employed real-time condition base monitoring of ball 
bearing while machine is working and applied deep neural 
network for forecasting RUL and detection of faults. The 
results further compared against Decision Tree (DT), 
Random Forest (RF), Naive Bayes (NB), Gradient Boosting 
(GB), SVM algorithm has overall superior results. Lei Ren et 
al. [100-101] proposed deep convolution neural network 
(CNN) for estimate RUL. A novel Attribute selection method 

has been adopted to obtain the eigenvector, called the 
spectrum principal energy vector helps deep CNN for 
forecast RUL. Cheng Cheng et al. [102] used the Hilbert 
Huang Transform (HHT) for extracting a nonlinear 
degradation energy indicator (DEI). CNN algorithm has 
been predict DEI and SVR forecasting model has been used 
to determine RUL. Sutrisno et al. [103] has adopted a 2 stage 
deep neural network (DNN), DNN model has been 
constructed in 1st stage to classify the health phase of the 
observed bearing by means of the stacked denoising 
autoencoder (SDA). Second stage used Shallow ANN with 
more hidden layers employed to estimate the RUL of 
bearings. 
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Figure 3. Shows the steps for forecasting the RUL of a bearing 
using ML 

Figure 3 shows the steps for forecasting the RUL of a 
bearing using ML. It involves making a model that can learn 
from historical information and make predictions about 
when a bearing is likely to fail based on its current condition 
and operating conditions. Collect historical data from 
bearings, including sensor measurements like vibration, 
temperature, load, lubrication condition, and other relevant 
parameters. Ensure that the data is cleaned and organized, 
removing any outliers or irrelevant information. raw sensor 
data used to extract relevant features which includes 
statistical procedures (mean, standard deviation, skewness, 
etc.), frequency domain features (FFT analysis), time domain 
features. Consider domain knowledge and expertise to 
choose the most informative features. Determine the failure 
point for each bearing in your historical dataset. Calculate 
the RUL for each bearing at different time steps leading up 
to its failure point. Dataset split into 3 sets as training, 
validation and testing. Training dataset train the model, the 
validation set to tune hyper-parameters, and estimate the 
model's performance the test set used. Select an appropriate 
ML algorithm such as Linear Regression, RF, GB, Support 
Vector Regression (SVR), and Neural Networks for 
regression tasks. Train chosen model on the training dataset, 
using the labeled RUL as the target variable and the 
engineered features as inputs. Tune hyper parameters using 
the validation set to optimize the model's performance and 
evaluate its performance through the testing. Regression 
tasks carried out through Mean Squared Error, Root Mean 
Squared Error, Mean Absolute Error and R-squared (R2) 
score. As model is trained and tested, it is use to predict the 
RUL of bearing based on their current sensor readings. 

Regularly acquire the data from functioning bearings and by 
updating the model as new data readily available. Regularly 
re-evaluate the model's performance and adjust as necessary 
to ensure accurate predictions. 

The Overview for estimation of remaining useful life 
(RUL) of the bearings using various ML Techniques is 
presented in Table.2. 

6. CHALLENGES AND FUTURE DIRECTIONS 

Data Variability: Real-world data can be highly variable 
due to changing operating conditions, making fault 
diagnosis challenging. 

Labeling and Data Annotation: Acquiring accurate and 
sufficient labeled data for various fault types can be time-
consuming and expensive. 

Online Diagnosis: Developing real-time, online fault 
diagnosis systems is crucial for preventing unplanned 
downtime. 

Explainability: Interpretable machine learning models 
are essential for gaining trust and acceptance in industrial 
applications. 

7. CONCLUSION 

The literature review explores the methodologies, 
techniques, and advancements in forecasting the lasting 
useful life of bearings. Machine learning (ML) techniques 
have revealed great ability to diagnosis bearing fault by 
leveraging sophisticated and data availability improves, the 
correctness and reliability of bearing fault finding systems 
are obviously increase, leading to more efficient maintenance 
strategies and reduced operational disruptions. Sensor data 
is valuable to accurately identify different fault types.  

The literature demonstrates a growing interest in 
precisely estimating the remaining useful life of bearings. 
Both model based and data-driven approaches offer valuable 
insights, with machine learning and deep learning 
techniques showing promise in capturing complex patterns. 
As sensor technology advances and more data becomes 
available, further improvements in RUL estimation can be 
expected, leading to enhanced maintenance strategies and 
operational efficiency in various industries. 
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