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ABSTRACT

A numerical model for the calculation of fretting fatigue crack initiation in smooth elastic contact is
presented. The model is focused on cylinder-on-plane contact and it can be applied in partial and gross slip
conditions by using a constant normal force, a reciprocating tangential force and a cyclic bulk stress. The
model is based on explicit stress equations, the multi-axial  Dang  Van  and  Findley  fatigue  criteria  and  a
statistical size factor concept. The model allows non-symmetric traction distribution caused by cyclic bulk
stress and the calculation of relative tangential surface displacement. The results from the model correlate
well with the corresponding FE-results. The model developed is fast.

Keywords: Fretting fatigue, cracking risk, Dang Van and Findley fatigue criterion, line contact

INTRODUCTION

Fretting may occur between any two
contacting surfaces where short amplitude
oscillatory movement is present. This causes
fretting wear of the surfaces and fretting
fatigue, which can lead to a rapid decrease in
fatigue life. The appearance and severity of
fretting fatigue is essentially dependent on the
stress field on a contact (sub)surface caused
by external bulk and contact loading. This
stress  field,  affected  by  the  oscillatory
movement of the contacting surfaces,
promotes crack nucleation. An extensive
description of the fretting phenomenon and its
associated contact mechanics is given in
references [1- 3]. Fretting fatigue may cause

hazardous and unexpected damage in machine
components.

Fretting fatigue models are essential for
researchers and designers to classify the
importance of the design parameters involved
in fretting fatigue and to obtain a detailed
understanding of the fretting fatigue
phenomenon. Design trend information is
often as important as completely satisfactory
prediction of the likelihood of crack initiation.
A numerical model for the calculation of
fretting fatigue crack initiation in smooth
elastic sphere-on-plane contact and a related
parameter study are presented in references
[4, 5]. A model for the evaluation of the
fretting fatigue in rough point contact has also
been developed [6].
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This study focuses on the development of the
numerical model for the calculation of fretting
fatigue crack initiation in smooth elastic
cylinder-on-plane contact. The model is based
on  explicit  stress  equations,  Dang  Van  and
Findley multi-axial failure criteria and a
statistical size factor concept. The results
from the model are compared to
corresponding FE results.

PROBLEM FORMULATION

A  cylinder  (body  1)  and  a  plane  (body  2)
make contact with the forces and coordinates
as shown in Fig. 1. The calculated stresses
and cracking risk are related to body 2, where
the external bulk stress in the x-direction also
acts.
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Figure 1. A schematic cylinder-on-plane
contact.

Hertzian normal contact pressure distribution
p is assumed in elastic cylinder-on-cylinder
contact with smooth surfaces as follows:
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where po is the maximum Hertzian pressure
and a is  the  half  width  of  the  Hertzian  line
contact, which can be obtained as follows:
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In Eqs (2) and (3), P is the normal force, R is
equivalent radius of curvature, E’ is
equivalent modulus of elasticity and b the
length of the line contact. In the cylinder-on-
plane case, R is simply the cylinder radius,
but the formulation is also valid for the
cylinder-on-cylinder contact cases using
equivalent radius (1/R =  1/R1 +  1/R2). The
equivalent modulus of elasticity is defined
as: 2
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the modulus of elasticity and  is the Poisson
ratio and subscripts 1 and 2 refer to bodies 1
and 2, respectively. The normal force P in the
z-direction is assumed to be constant (P = Po),
while the tangential force Q in the x-direction
is oscillating with an amplitude of ±Qo.

Once a tangential force is introduced, some
sliding or at least partial slip between the
contacting surfaces will occur. Assuming a
constant friction coefficient  over  the  slip
zone, the tangential traction q caused by
tangential motion inside the contact area is
given according to [2, 7], by the following
equations:
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where the half width of the stick zone c is:
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The partial slip condition in the contact will
occur, when PQ .  In  this  case,  the
surfaces in the central zone of the line contact
will stick together whereas the outer zone will
slip  as  shown  in  Fig.  1.  If PQ , the
tangential force is at its maximum and
macroscopic sliding occurs between the
surfaces.   It  is  assumed that  the  effect  of  the
tangential force on the normal pressure
distribution and contact area is negligible.

The normal pressure and tangential traction at
the contact surface cause stresses on and
beneath the contact surface. The total
macroscopic stress tensor i(t) can be
obtained from the sum of the stress tensors
due to the constant normal force iPo, the
cyclic external bulk stress iExt(t),  and  the
oscillating tangential force iQ(t).  It follows
as:

)()()( ttt iQiExtiPoi          (6)

The macroscopic stress components due to
normal and tangential forces at the general
grid point i are obtained by introducing
explicit equations for the stresses in a line
contact  surface  according  to  [2,  3].   It  is
assumed that the half plane (body 2) is in a
state of plane deformation. These equations
are restricted to a macroscopic sliding case
i.e. PQ , but they can also be applied to a
partial slip case by superposing the separate
tangential tractions of three different sliding
cylinders with the same equivalent radius, but
at different concentric regions with radii a, c
and c’. Variable c’ is  the radius of the cyclic
stick zone.

Fatigue criteria

Evaluation of fretting fatigue crack initiation
is based on the multi-axial Dang Van and
Findley fatigue criteria. Proportional loadings
are assumed and the total macroscopic stress
tensors i(t1) and i(t2),  based  on  the  two
extreme loading conditions, are given as input
values. Basically, if the cracking risk d  1,
failure will occur with a certain probability.
This probability of failure can be determined
by the probability theory for, preferably, both
a log normal distributed stress and a log
normal distributed strength.

The reference crack initiation risk dDVref in
body 2 with Dang Van criterion is given as
[8]:
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The value of dDVref obtained is the maximum
value found during the load cycle. The shear
fatigue limit afref and the constant ahref are
parameters  of  the  material  which  can  be
determined with two uniaxial experimental
fatigue tests. Hydrostatic stress h is the
bigger of the two hydrostatic stresses
calculated from extreme loadings as:

3/))(()( ttracet ih          (8)

To obtain the shear stress amplitude a(t), the
microscopic shear stress tensor i(t)  needs  to
be calculated as follows:
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The same magnitude of shear stress is
obtained by using a macroscopic stress tensor
from time 1 or time 2. * is the residual stress
tensor which is assumed to be time
independent and can be stated as;
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The  shear  stress  amplitude  to  be  used  in  the
Dang Van criterion can now be found by
solving the principal stresses I and III ( I >

II > III), resulting from Eq. (9):

2
)()()( ttt IIII

a        (11)

The critical plane is identified by the direction
of the largest shear stress amplitude.

The reference crack initiation risk dFref in
body 2 with the Findley criterion is given as
[8]:
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where a is  the  shear  stress  amplitude  and n
the normal stress on a shear plane. The shear
fatigue limit fFref and the constant kFref are the
material parameters. In the Findley criterion,
the basic idea is to search the critical plane,
where the damage )()( tktD nFrefa on
this plane, at any time during the load cycle,
reaches its maximum value.  The critical
plane was searched by rotating the stress
tensors i(t1) and i(t2) through all possible
planes as follows:
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where RF is the rotation matrix. The damage
was studied on one face of the stress element
and the rotation angles were varied within the
range of 0 … 180 degrees. The calculation
time required for rotation of the stress element
was reduced using matrix methods. The shear
stress amplitude a at the face of stress
element contains two shear stress components
as follows:
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where a is the shear stress difference
between the two extreme stress states. The
damage D can  be  stated  as  the  bigger  of  the
two values calculated from the extreme
loadings. Finally, the maximum reference
cracking risk can be obtained with Eq. (12),
from the results for all the rotated planes. This
also determines the critical plane.

Statistical size factor

Fretting contact includes extremely steep
stress gradients both in depth and along the
surface from the trailing edge. Because the
fatigue limit is a random variable, it seems
appropriate to use the theory of the weakest
link to estimate the statistical size factor,
which takes into account the difference
between the effective stress area of the
reference specimen used to test the Haigh
diagram  and  the  effective  stress  area  of  the
contact zone. Moreover, this approach has the
advantage of being generally applicable. The
detailed background and description of the
statistical size factor is given elsewhere [9].
Here, a short outline is given in a fretting line
contact application.

The cracking risk d and the damage D over
the fretting contact based on Dang Van and
Findley criteria can already be calculated for a
general grid point i. The standard normal
variable i and corresponding reliability Rd,i
for the different stress intervals are calculated
with the following expressions:
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The maximum damage at the critical point is
denoted by Dmax and sr is the expectation
(sample) relative standard deviation
(coefficient of variation). Eq. (15) and (16)
are solved for every grid point i in the
calculation domain. The effective stress area
Aeff per single contact is given as:

i
id

eff A
R

A
5.0lg

lg ,                                   (17)

In Eq. (17), Ai is the grid interval in the x-
direction multiplied by the length of the line
contact.  The number of links n is the ratio of
the effective stress area Aref of the reference
specimen used to test the Haigh diagram, to
the effective stress area Aeff of the contact
zone.

eff
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The expected contact fatigue limit has to be
reduced to the probability of failure Pd given
by the following equation to obtain the fatigue
limit of the reference specimen:

d
n

d RP 15.01                                (19)

The reliability Rd is given in Eq. (16), which
allows for solving of the corresponding  -
value from the Eq. (19). Finally, using the log
normal distribution, the statistical size factor
Klsize can be calculated as:

lg10 s
lsizeK                                             (20)

The logarithmic standard deviation slg can be
evaluated directly from the staircase test of
the fatigue limit by a maximum likelihood fit
of  the  log  normal  density  function  to  the  test
outcome. The actual fatigue limit at the
contact is the statistical size factor Klsize
multiplied by the fatigue limit of the reference
specimen used to test the Haigh diagram. It
follows that the actual maximum cracking

risk according to Dang Van dDV and according
to Findley dF can be stated as;
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KDVlsize refers to the statistical size factor
related to Dang Van damage and KFlsize to
Findley damage.

Tangential displacement

The equations for the relative tangential
surface displacement due to tangential load in
cylinder-on-plane contact were also
implemented in the model. The results are
exact if the two bodies are elastically similar.
They may also be used in contacts between
elastically dissimilar bodies, but they are only
approximate true under these conditions. The
relative tangential surface displacement sx
caused by tangential sliding traction (Q = µP)
is given by [2].
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It follows that:
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The constants C01 and C1 are arbitrary, but C01
should be chosen so that the displacement is
continuous at the contact edge i.e. x = ±a. In
partial slip conditions, the relative tangential
displacements are determined in a similar
superposition manner to that in the case of
stress components. The maximum slip is
observed when x = ±a. Eqs (22a) and (22b)
describes the total slip including both
surfaces. The absolute displacement can not
be determined. This inability to find the
absolute displacement field is a characteristic
of all 2D elasticity problems [2].

Non-symmetric traction distribution

It is known from the literature [2, 10] that in
many experimental setups the tangential load
is introduced by cyclic bulk stress as shown in
Fig. 2.

P

P

Q

Q

X

xExt

Figure 2. Common experimental setup for
fretting tests.

In the setup shown in Fig. 2, the traction
distribution is no longer axially symmetric
due to the stick zone offset. The stick zone

offset e for plane strain conditions can be
expresses as [2].
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where aExt is the bulk stress amplitude in the
x-direction. The traction distribution in the
contact for the cyclic alternation of Q (= ±Qa)
from reference [2] is:
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Eq. (25) is organized in a similar way to Eq.
(4). It reveals that in the case of two extreme
loadings, the total tangential traction can be
obtained by superposing the separate
tangential tractions of two different sliding
spheres with the same equivalent radius, but
different concentric regions with radii a and c.
The solution is valid if e  +  c  <  a, which
means that the whole stick zone should be
located inside the contact area.

FE-MODEL

The cylinder-on-plane situation described is
shown in Fig. (2), and was also modelled with
finite  elements  for  comparison  of  the  results.
The FE model has been presented to
International Symposium of Fretting Fatigue
in Montreal [11]. A short summary is given
here.
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It was apparent from the results of the
developed model that the element size must
be very small with a size of less than one m,
to achieve realistic traction distribution and a
corresponding stress field. Only a small part
of the plane and cylinder using all the

necessary boundary conditions could be
modelled. The model and its boundary
conditions in principle are shown in Fig. (3).
The y-coordinate and bulk in  the  FE  model
corresponds to the x-coordinate and aExt in
the developed fretting model.

Figure 3. Nonlinear FE model for cylinder-on-plane contact (dimensions in mm) [11].

Although the explicit model is considered as a
plain geometry, 8-node brick elements in one
layer in the z-direction were used. A 3D
model was used because the automated
calculation of the effective stress area is not
possible on 2D elements in the ABAQUS
program used. Plain stress boundary
conditions were used although it can be
argued that a plain strain condition dominates
towards the middle of the contact width.
However, the Findley criterion calculates the
same safety factor at the critical point
regardless of whether a plain strain or a plain
stress model has been used. This is because
the Findley criterion orientates the critical
plane in this particular situation in such a way
that only the axial normal stress in the surface
at that point will contribute to the damage.

Although,  only  such  a  small  part  of  the
system was modelled, the number of degrees
of freedom rose to about 4 million when the
element size was 0.25 m. The convergence
of  the  calculation  was  still  checked  with  a
model with a halved the element size to 0.125

m, but with only the normal load and the
tangential force. In addition convergence of
the solution was analysed with three different
element sizes (1.0 m, 0.5 m and 0.25 m)
by applying the normal force and the fully
reversed tangential force. Finally, a penalty
formulation with allowable elastic slip of
0.015 m and an element size of 0.25 m was
used in the nonlinear contact analysis.
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RESULTS AND DISCUSSION

The model stress field equations were initially
tested successfully against the corresponding
sliding line contact results given by Johnson
[3].  Finally,  the  model  was  applied  and
compared to the cylinder-on-plane case,
which was also modelled with finite elements
and post-processed by Findley fatigue
criterion and statistical size factor [11]. The
calculation case includes also stick zone offset
caused by the cyclic bulk stresses. Material
related input values used in the Findley
fatigue criteria for both the contacting bodies
describe the properties of quenched and
tempered steel 34CrNiMo6. They were
derived from the experimental fatigue tests
and are given as follows: Findley related
material constant kFref = 0.29 and shear fatigue
limit fFref = 380 MPa, The elasticity modulus
of the material is 206 GPa and the Poisson
ratio is 0.3. The effective stress area of the
specimen used to test the Haigh diagram Aref
is 215 mm2 and the sample relative standard
deviation sr is 0.065.

The calculated pressure distribution and
traction distribution are shown in Fig. (4) and
(5).

Figure 4. The pressure distribution and
tangential traction distribution calculated
with the developed model, P = 195.6 N, Q =
77.3 N,  = 0.9, b = 6 mm, R = 5 mm, aExt =
±248.7 MPa.

Figure 5. The corresponding distributions
calculated with the FE model and compared
to the theoretical tangential traction [11].

Figs.  (4)  and  (5)  show  that  the  normal
pressure distributions are very similar.
According to the FE analysis the half width of
the contact zone was 0.0435 mm which is
fairly close to the theoretical value of 0.0428
mm calculated with the developed model.
Correspondingly, finite element analysis gave
a stick zone half width of c = 0.036 mm and a
stick zone offset e = 0.0055 mm, which agree
fairly  well  with  the  theoretical  values  (c =
0.032 mm, e = 0.0061 mm) obtained from the
developed model. The tangential traction
distribution calculated with the developed
model has sharper peaks around the stick zone
boundary than the FE-results, but otherwise
the results are very much in the same order.

It has recently been found that this difference
in ultimate peak shear traction is strongly
related to the allowable elastic slip given in
the FE-model. Decreasing the allowable
elastic  slip  down  to  1E-6  mm  or  using  the
Lagrange multiplier formulation strongly
reduces this difference in peak shear traction
as presented in reference [12].

However, the results calculated with an elastic
slip of 0.015 m are accurate enough for
evaluation of the cracking risk behaviour in
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the contact. The calculated Findley based
cracking risks are shown in Figs. (6) and (7).

Figure 6. The Findley reference cracking risk
dFref, with (solid line) and without (dashed
line) external cyclic bulk stress calculated
with the developed model, P = 195.6 N, Q =
77.3 N,  = 0.9, b = 6 mm, R = 5 mm, aExt =
±248.7 MPa.

Figure 7. The corresponding Findley
reference cracking risk dFref, with (solid line)
and without (dashed line) external cyclic bulk
stress calculated with the FE model [11].

It is shown in Figs. (6) and (7), that the
general trends of the Findley based cracking
risk curves are similar. The maximum model

cracking risk peak is slightly sharper resulting
in a value of 1.536, which is 9 % higher than
the corresponding FE-result. This was
expected due to the difference in tangential
traction distribution. Without external bulk
stress the correspondence of the cracking risk
results are already very good. The statistical
size factor was 1.32 calculated with the
developed model and 1.33 calculated from the
FE-results.

It can be concluded that the model results
correlate well with the corresponding FE-
results. The slight differences observed in
peak values of tangential traction and
cracking risk can mainly be explained by the
magnitude of the allowable elastic slip in the
FE model. The model developed is fast. The
solution  time for  the  results  was  less  than  10
seconds using Intel Q9400 2.66 GHz personal
computer. The potential for applying finite
elements to fretting fatigue problems was also
demonstrated. The advantage of finite
elements is that they are not limited to any
particular contact geometry.

CONCLUSIONS

A numerical model for the calculation of
fretting fatigue crack initiation in smooth
elastic contact is presented. The model is
focused on cylinder-on-plane contact and it
can be applied in partial and gross slip
conditions. The model assumes proportional
loading conditions with a constant normal
force, a reciprocating tangential force and a
cyclic bulk stress. The model is based on
explicit stress equations, the multi-axial Dang
Van and Findley fatigue criteria and a
statistical size factor concept. The model
allows non-symmetric traction distribution
caused by cyclic bulk stress and the
calculation of relative tangential
displacement.

The model contact and cracking risk results
correlate well with the corresponding FE-
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results. The slight differences observed in
peak values of tangential traction and
cracking risk can mainly be explained by the
magnitude of allowable elastic slip used in FE
models. The model developed is fast.
Moreover, the size of the calculation grid
does not affect the accuracy of the executed
stress state or reference cracking risk at the
calculation points.
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