Influence of micro boron carbide particles on microstructure, mechanical properties, and dry sliding wear properties of an aluminium Al2214-B4C metal matrix composite

Authors

  • Revanna K VTU, Belagavi
  • Dr Suresh R VTU,CPGS Mysuru

DOI:

https://doi.org/10.30678/fjt.120613

Keywords:

Stir casting, metal matrix composites, wear, aluminium, boron carbide

Abstract

In this experimental research, an attempt is made to develop Al2214-B4C composite materials with reinforcement of micro boron carbide (B4C) (viz. 0, 1.5, 3, 4.5, and 6 wt.%) by using a novel liquid metallurgical stir casting technique with modified bottom pouring facilities and studying the microstructure, physical, mechanical, and dry sliding wear resistance responses. The microstructure of Al2214-B4C composite samples with varied boron carbide weight percentages was examined under an electronic scanning microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDX) device. The physical characteristics like density and porosity, mechanical strength, such as micro and macro hardness, yield and ultimate tensile strength, and sliding wear response were examined under variable experimental conditions. The experimental results of the Al2214-B4C composite revealed a decreased specific density with an increased weight percentage of boron carbide particles in the matrix and a homogeneous distribution of reinforced micro boron carbide particles in the Al2214 matrix. There was an appreciable improvement in mechanical properties and wear properties in composite materials as compared to an unreinforced aluminium alloy.

References

Surappa, M. K. (2003). Aluminium matrix composites: Challenges and opportunities. Sadhana, 28(1), 319-334. https://doi.org/10.1007/BF02717141

Soltani, S., Azari Khosroshahi, R., Taherzadeh Mousavian, R., Jiang, Z. Y., Fadavi Boostani, A., & Brabazon, D. (2017). Stir casting process for manufacture of Al-SiC composites. Rare Metals, 36(7), 581-590. https://doi.org/10.1007/s12598-015-0565-7

Miracle, D. B. (2005). Metal matrix composites-from science to technological significance. Composites science and technology, 65(15-16), 2526-2540. https://doi.org/10.1016/j.compscitech.2005.05.027

Mukhopadhyay, P. (2012). Alloy Designation, Processing, and Use of AA6xxx Series Aluminum Alloys. International Scholarly Research Network, ISRN Metallurgy. 1-15. https://doi.org/10.5402/2012/165082

Akinwamide, S. O., Lemika, S. M., & Abiodun, B. (2019). Study of microstructural and mechanical properties of stir cast Al (SiC-Mg-TiFe) composite. Fluid Dynamics & Materials Processing, 15(1), 15-26. https://doi.org/10.32604/fdmp.2019.04761

Gopalakrishnan, S., & Murugan, N. (2012). Production and wear characterisation of AA 6061 matrix titanium carbide particulate reinforced composite by enhanced stir casting method. Composites Part B: Engineering, 43(2), 302-308. https://doi.org/10.1016/j.compositesb.2011.08.049

Baron, C., & Springer, H. (2017). Properties of particle phases for metal-matrix-composite design. Data in brief, 12, 692-708. https://doi.org/10.1016/j.dib.2017.04.038

Viala, J.C., Bouix, J., Gonzalez, G., & Esnouf, C. (1997). Chemical reactivity of aluminium with boron carbide. Journal of Materials Science, 32, 4559-4573. https://doi.org/10.1023/A:1018625402103

Singla, M., Dwivedi, D. D., Singh, L., & Chawla, V. (2009). Development of aluminiumbased silicon carbide particulate metal matrix composite. Journal of Minerals and Materials Characterization and Engineering, 8(06), 455. https://doi.org/10.4236/jmmce.2009.86040

Reddy, P. S., Kesavan, R., & Vijaya Ramnath, B. (2018). Investigation of mechanical properties of aluminium 6061-silicon carbide, boron carbide metal matrix composite. Silicon, 10(2), 495-502. https://doi.org/10.1007/s12633-016-9479-8

Ding, S., Zeng, Y. P., & Jiang, D. (2006). Thermal shock resistance of in situ reaction bonded porous silicon carbide ceramics. Materials Science and Engineering: A, 425(1-2), 326-329. https://doi.org/10.1016/j.msea.2006.03.075

Tjong, S. C., & Ma, Z. Y. (2000). Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering: R: Reports, 29(3-4), 49-113. https://doi.org/10.1016/S0927-796X(00)00024-3

Soy, U., Ficici, F., & Demir, A. (2012). Evaluation of the Taguchi method for wear behavior of Al/SiC/B4C composites. Journal of Composite Materials, 46(7), 851-859. https://doi.org/10.1177/0021998311410510

Hynes, N. R. J., Kumar, R., Tharmaraj, R., & Velu, P. S. (2016, May). Production of aluminium metal matrix composites by liquid processing methods. In AIP conference proceedings (Vol. 1728, No. 1, p. 020558). AIP Publishing LLC. https://doi.org/10.1063/1.4946609

Wahab, M. N., Daud, A. R., & Ghazali, M. J. (2009). Preparation and characterization of stir cast-aluminum nitride reinforced aluminum metal matrix composites. International Journal of Mechanical and Materials Engineering, 4(2), 115-117.

Gobalakrishnan, B., Rajaravi, C., Udhayakumar, G., & Lakshminarayanan, P. R. (2021). Effect of ceramic particulate addition on aluminium based ex-situ and in-situ formed metal matrix composites. Metals and Materials International, 27(9), 3695-3708. https://doi.org/10.1007/s12540-020-00868-6

Taheri-Nassaj, E., Kobashi, M., & Choh, T. (1995). Fabrication of an AlN particulate aluminium matrix composite by a melt stirring method. Scripta metallurgica et materialia, 32(12). https://doi.org/10.1016/0956-716X(95)00083-8

Yılmaz, O., & Buytoz, S. (2001). Abrasive wear of Al2O3-reinforced aluminium-based MMCs. Composites Science and Technology, 61(16), 2381-2392. https://doi.org/10.1016/S0266-3538(01)00131-2

Kalaiselvan, K., Murugan, N., & Parameswaran, S. (2011). Production and characterization of AA6061-B4C stir cast composite. Materials & Design, 32(7), 4004-4009. https://doi.org/10.1016/j.matdes.2011.03.018

Kumar, M. S., Pruncu, C., Harikrishnan, P., Begum, S. R., & Vasumathi, M. (2020). Experimental investigation of in-homogeneity in particle distribution during the processing of metal matrix composites. Silicon.

Sonber, J. K., Limaye, P. K., Murthy, T. C., Sairam, K., Nagaraj, A., Soni, N. L., ... & Chakravartty, J. K. (2015). Tribological properties of boron carbide in sliding against WC ball. International Journal of Refractory Metals and Hard Materials, 51, 110-117. https://doi.org/10.1016/j.ijrmhm.2015.03.010

Rajesh, G. L., Auradi, V., & Kori, S. A. (2016). Mechanical behaviour and dry sliding wear properties of ceramic boron carbide particulate reinforced Al6061 matrix composites. Transactions of the Indian Ceramic Society, 75(2), 112-119. https://doi.org/10.1080/0371750X.2016.1168318

D. Nagesh, S. Raghavendra, N. M. Sivaram, S. Suresh, B. Manjunatha, and S. Sanketh, "Tribological characteristics of Al6061, boron, and graphite hybrid metal matrix composites," Adv. Mater. Process. Technol., vol. 00, no. 00, pp. 1-15, 2021,

A. M. Al-Qutub, I. M. Allam, and M. A. Abdul Samad, "Wear and friction of Al-Al2O3 composites at various sliding speeds," J. Mater. Sci., vol. 43, no. 17, pp. 5797-5803, 2008, https://doi.org/10.1007/s10853-008-2867-8

Downloads

Published

2022-12-31

Issue

Section

Peer reviewed articles

How to Cite

Influence of micro boron carbide particles on microstructure, mechanical properties, and dry sliding wear properties of an aluminium Al2214-B4C metal matrix composite. (2022). Tribologia - Finnish Journal of Tribology, 39(3–4), 4-11. https://doi.org/10.30678/fjt.120613