The tribological properties of lubricating greases produced on vegetable base and modified of polytetrafluoroethylene
DOI:
https://doi.org/10.30678/fjt.84884Keywords:
lubricating grease, modified additive, tribological properties, rolling contact fatigue, rheological properties, the correlation function MSD, the storage modulus G’, the loss modulus G’’Abstract
The article presents the results of research on the influence of polytetrafluoroethylene additive on the tribological and rheological properties of selected lubricant compositions.
Based on the obtained test results, it was found that the introduction of a modifying additive to the lubricant structure allows a significant reduction of the coefficient of friction, thus increasing the efficiency of tribological protection of the tribosystem.
All lubricating compositions modified with at least 1% polytetrafluoroethylene guarantee effective anti-wear protection under load conditions of the tribosystem. Modification of the tested lubricating compositions with the applied additive affects the increase of indicators characterizing the fatigue life of the examined lubricating greases based on sunflower oil. The introduction of the polytetrafluoroethylene into the structure of the tested lubricants changed the values of the MSD correlation function and the G’ and G’’ modules, which significantly influenced the internal structure of the tested lubricant compositions.
References
Ge X., Xia Y., Cao Z.: Tribological properties and insulation effect of nanometer TiO2 and nanometer SiO2 as additives in grease, Tribology International, vol.92, 2015, pp. 454-461, https://doi.org/10.1016/j.triboint.2015.07.031
Rizvi S.Q.A.: A Comprehensive Review of Lubricant Chemistry, Technology, Selection, and Design, ASTM International, Baltimore, 2009, USA, https://doi.org/10.1520/mnl59-eb
Mortier R.M., Fox F.M., Orszulik S.T.: Chemistry and Technology of Lubricants, Springer, Dordrecht, 2010, https://doi.org/10.1007/978-1-4020-8662-5
Rudnick L.R.: Chemistry and Applications: Lubricant Additives, CRC Press, Boca Raton, 2017, https://doi.org/10.1201/9781315120621
Lugt P.M.: Grease Lubrication in Rolling Bearings, Wiley, 2013, USA, https://doi.org/10.1002/9781118483961
Mohamed A., Osman T.A., Khattab A., Zaki M.: Tribological Behavior of Carbon Nanotubes as an Additive on Lithium Grease, Journal Of Tribology, 137(1), 2014, pp. 011801-5, https://doi.org/10.1115/1.4028225
Zhao G., Zhao Q., Li W., Wang X., Liu W.: Tribological properties of nano-calcium borate as lithium grease additive, Lubrication Science, 26(1), 2014, pp. 43-53, https://doi.org/10.1002/ls.1227
Yuan X.D., Yang X.J.: A study on friction and wear properties of PTFE coatings under vacuum conditions, Wear, 269, 2010, pp. 291–297, https://doi.org/10.1016/j.wear.2010.04.014
Rico E.F., Minondo I., Cuervo D.G.: The effectiveness of PTFE nanoparticle powder as an EP additive to mineral base oil, Wear, 262, 2007, pp. 1399–1406, https://doi.org/10.1016/j.wear.2007.01.022
Su F.H., Zhang Z.Z., Liu W.M.: Study on the friction and wear properties of glass fabric composites filled with nano and micro particles under different conditions, Mater Sci Eng A, 392, 2010, pp. 359–365, https://doi.org/10.1016/j.msea.2004.09.036
Hou X., Deem P.T., Choy K.L.: Hydrophobicity study of polytetrafluoroethylene nanocomposite films, Thin Solid Films, 520(15), 2012, pp.4916–4920, https://doi.org/10.1016/j.tsf.2012.02.074
Khedkar J., Negulescu I., Meletis E.I.: Sliding wear behavior of PTFE composites, Wear, 252(5), 2002, pp.361–369, https://doi.org/10.1016/S0043-1648(01)00859-6
Bijwe J., Sharma M.: Nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites, In: Davim J. (ed) Tribology of nanocomposites materials forming machining and tribology, Springer, Berlin Heidelberg, 2012, pp 19–39, https://doi.org/10.1007/978-3-642-33882-3_2
Chen J.: Tribological Properties of Polytetrafluoroethylene, Nano-Titanium Dioxide, and Nano-Silicon Dioxide as Additives in Mixed Oil-Based Titanium Complex Grease, Tribology Letters, vol. 38, issue 3, 2010, pp. 217-224, https://doi.org/10.1007/s11249-010-9593-5
Czarny R., Paszkowski M.: The influence of graphite solid additives, MoS2 and PTFE on changes in shear stress values in lubricating greases, Journal of Synthetic Lubrication, 24(1), 2007, pp. 19-29, https://doi.org/10.1002/jsl.26
Krawiec S.: On the mechanism of the synergistic effect of PTFE and copper in a lithium grease lubricant, Industrial Lubrication and Tribology, vol. 63 issue: 3, 2011, pp.171-177, https://doi.org/10.1108/00368791111126590
Blanchet T.A., Kennedy F.E.: Sliding wear mechanism of polytetrafluoroethylene (PTFE) and PTFE composites, Wear, vol. 153, issue 1, 1992, pp. 229-243, https://doi.org/10.1016/0043-1648(92)90271-9
Iłowska J., Chrobak J., Grabowski R.,Szmatoła M., Woch J., Szwach I., Drabik J., Trzos M., Kozdrach R., Wrona M. : Designing lubricating properties of vegetable base oils. Molecules, 23(8), 2018, pp. 2025-2032, https://doi.org/10.3390/molecules23082025
Nowicki J., Drabik J., Woszczyński P., Gębura K., Nowakowska-Bogdan E., Kozdrach R.: Tribological characterisation of plant oil derived fatty acid esters of higher polyols: Comparative experimental study, Lubrication Science, 31, 2019, pp. 61–72, https://doi.org/10.1002/ls.1448
Drabik J., Kozdrach R., Wolszczak M., Wrona M.: The proecological base oils of highly specialized lubricants, Przemysł Chemiczny 9/2018, pp. 1538-1541, https://doi.org/10.15199/62.2018.9.30
Moreira-Izurieta F., Jabbarzadeh A.: Tribological Studies in Cartilaginous Tissue of Lamb Synovial Joints Lubricated by Distilled Water and Interstitial-Fluid-Like Solution, Tribology in Industry, 39 (3), 2017, pp. 319-328, https://doi.org/10.24874/ti.2017.39.03.06
Gilardi R.: Tribology of Graphite-Filled Polystyrene, Lubricants, 4 (2), 2016, pp. 20-25, https://doi.org/10.3390/lubricants4020020
Cyriac F., Lugt P.M., Bosman R.: The Impact of Water on the Yield Stress and Startup Torque of Lubricating Greases, Tribology Transactions, 60(5), 2017, pp. 824-831, https://doi.org/10.1080/10402004.2016.1215583
Miller M.K., Khalid H., Michael P.W., Guevremont J.M., Garelick K.J., Pollard G.W., Whitworth A.J., Devlin M.T.: An Investigation of Hydraulic Motor Efficiency and Tribological Surface Properties, Tribology Transactions, vol. 57, issue 4, 2014, pp. 622-630, https://doi.org/10.1080/10402004.2014.887167
Cyriac F., Lugt P.M., Bosman R.: Yield Stress and Low-Temperature Start-Up Torque of Lubricating Greases, Tribology Letters, 63 (6), 2016, pp. 1124-1131, https://doi.org/10.1007/s11249-016-0693-8
Oppermann A.K.L., Verkaaik L.C., Stiegera M., Scholten E.: Influence of double (w1/o/w2) emulsion composition on lubrication properties, Food and Function, 8, 2017, pp. 522-532, https://doi.org/10.1039/c6fo01523a.
Kozdrach R.: The influence of mechanical forces on the change of the tribological properties of mineral based lubricating greases, Nafta-Gaz, 1/2016, pp. 50-57, https://doi.org/10.18668/NG2016.01.07
Kozdrach R.: The influence of dispersed type phase on tribological properties of lubricating greases to form on the linseed oil, Nafta-Gaz 6/2018, pp. 471-478, https://doi.org/10.18668/NG.2018.06.08
Kozdrach R.: The influence of vegetable dispersion phase on rolling contact fatigue of biodegradable lubricating greases, Tribologia, no. 6, 2016, pp. 57-67, https://doi.org/10.5604/01.3001.0010.6716
Kozdrach R., Molenda J.: The testing of exploitation properties of ecological greases modified with polimer-silica additive, Tribologia, no. 6, 2012, pp. 99-111
Rico J.E., Battez A., Cuervo D.G.: Rolling contact fatigue in lubricated contacts, Tribology International, no. 36, 2003, pp. 35-40, https://doi.org/10.1016/S0301-679X(02)00097-X
Łubiński J., Śliwiński P.: Multi parameter sliding test result evaluation for the selection of material pair for wear resistant components of a hydraulic motor dedicated for use with environmentally friendly working fluids, Solid State Phenomena, no. 225, 2015, pp. 115-122. https://doi.org/10.4028/www.scientific.net/SSP.225.115
Pawelec E., Drabik J.: The change of fatigue life of rolling bearings as effect of an interaction between grease components and friction elements surface, Tribologia, no. 1, 2007, pp. 115-125
Piekoszewski W., Szczerek M., Tuszyński W.: The modification of four-balls tribological tests, Tribologia, no. 5, 6, 1997, pp. 818-825
Michalczewski R., Piekoszewski W., Wulczyński J.: The method for investigation of rolling contact fatigue of coated elements, Tribologia, no. 4, 2003, pp. 91-99
Mota V., Ferreira L.A.: Influence of grease composition on rolling contact wear: experimental study, Tribology International, vol. 42, issue 4, 2009, pp. 569-574, https://doi.org/10.1016/j.triboint.2008.04.002
Zhao P., Hadfield M., Wang Y., Viellard C.: The influence of test lubricants on the rolling contact fatigue failure mechanisms of silicon nitride ceramic, Wear, vol. 257, issues 9-10, 2004, pp. 1047-1057, https://doi.org/10.1016/j.wear.2004.07.015
Mason T. G., Weitz D. A.: Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids, Physical Review Letters 1995, 74, pp. 1250-1253, https://doi.org/10.1103/PhysRevLett.74.1250
Dziubiński M.: Microrheology: review of methods and applications in microtechnological processes, Przemysł Chemiczny, 93, 10/2014, pp. 1767-1772, https://doi.org/10.12916/przemchem.2014.1767
Corredig M., Alexander M.: Food emulsions studied by DWS: recent advances, Trends in Food Science and Technology, 2008, 19(2), pp. 67–75, https://doi.org/10.1016/j.tifs.2007.07.014
Lopez-Diaz D., Castillo R.: Microrheology of solutions embedded with thread-like supramolecular structures, Soft Matter, 7 (13), 2011, pp. 5926-5937, https://doi.org/10.1039/C1SM05274H
Alexander M., Dalgleish D. G.: Interactions between Denatured Milk Serum Proteins and Casein Micelles Studied by Diffusing Wave Spectroscopy, Langmuir, 21, 2005, pp. 11380−11386, https://doi.org/10.1021/la0519958
Alexander M., Corredig M., Dalgleish D.G.: Diffusing wave spectroscopy of gelling food systems: The importance of the photon transport mean free path (l*) parameter,Food Hydrocolloids, 20 (2-3), 2006, pp. 325-331, https://doi.org/10.1016/j.foodhyd.2005.02.021
Carinaux F. Cipelletti L., Scheffold F., Schurtenberger P.: Microrheology of giant-micelle solutions, Europhysics Letters, 57 (5), 2002, pp. 738-744, https://doi.org/10.1209/epl/i2002-00525-0
Marze S., Choimet M., Foucat L.: In vitro digestion of emulsions: diffusion and particle size distribution using diffusing wave spectroscopy and diffusion using nuclear magnetic resonance, Soft Matter, 8 (42), 2012, pp. 10994-11004, https://doi.org/10.1039/C2SM26334C
Oelschlaeger C., Suwita P., Willenbacher N.:Effect of Counterion Binding Efficiency on Structure and Dynamics of Wormlike Micelles, Langmuir, 26 (10), 2010, pp. 7045-7053, https://doi.org/10.1021/la9043705
Dasgupta B. R., Tee S. Y., Crocker J. C., Frisken B. J. & Weitz D. A.: Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering, Phys Rev E Stat Nonlin Soft Matter Phys 65, 2002, pp. 051501-10, https://doi.org/10.1103/PhysRevE.65.051505
Galvan-Miyoshi J., Delgado J., Castillo R.:Diffusing wave spectroscopy in Maxwellian fluids, Soft Matter, 26 (4), 2008, pp. 369-377, https://doi.org/10.1140/epje/i2007-10335-8
Scheffold F., Diaz-Leywa P., Reufer M., Braham N.B., Lynch I., Harden J.L.: Brushlike Interactions between Thermoresponsive Microgel Particles, Phys. Rev. Lett., 104 (12), 2010, pp. pp. 128304-08, https://doi.org/10.1103/PhysRevLett.104.128304
Drabik J., Kozdrach R., Wrona M., Iłowska J.: Use of diffusing wave and Raman spectroscopy for evaluation of paraffinic emulsions formed by homogenization, Przemysł Chemiczny, 12/2017, pp. 2544-2549, https://doi.org/10.15199/62.2017.12.31
Kozdrach R., Skowroński J.: The Application of Polyvinylpyrrolidone as a Modifier of Tribological Properties of Lubricating Greases Based on Linseed Oil, Journal of Tribology, 140(6), , 2018, pp. 061801-07, https://doi.org/10.1115/1.4040054
Drabik J., Trzos M., Kozdrach R., Wrona M.,Wolszczak M., Duszyński G., Piątkowski M.: Modeling and evaluation of propertiesof lubricants used in the food industry, Przemysł Chemiczny 12/2018, pp. 2200-2204, https://doi.org/10.15199/62.2018.12.39
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Rafal Kozdrach

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors of the publication retain the copyrights and the author can publish the article also in other media, such as in her/his PhD thesis or open access databases, such as ResearchGate.
The license of the published metadata is Creative Commons CC0 1.0 Universal (CC0 1.0).