Supporting FAIR data: categorization of research data as a tool in data management




research data management, data management, FAIR principles, persistent identifiers [], data citation, open science


The demand for implementation of the FAIR data principles is in many cases difficult for a researcher to adhere to in efficient ways due to lacking tools. We suggest categorizing data in a more extensive and systematic way with focus on the inherent properties of the data as means to enhancing research data services. After discussing different approaches to categorizing data, we propose a tripartite research data categorization based around the inherent aspect of stability. The three research data types are operational data, generic research data and research data publications. Generic research data is validated data and can be cumulative, i.e. data can be added without versioning, however if it is dynamic it should be versioned. Generic research data should be separated from immutable dataset publications that are published for reasons of reproducibility of specific research results.


ANDS. (n.d.). Guides and resources. Persistent identifiers. Australian national data service.

ATT. (2017). Oikeuksien hallintaan liittyvät metatiedot -selvitys. Opetus- ja kulttuuriministeriö.

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533(7604), 452.

Business Dictionary. (n.d.). What is active data? Definition and meaning.

CEOS Data Stewardship Interest Group. (2017). Persistent identifier best practices. Version 1.2. CEOS/wgiss/dsig/pidbp.

DataCite Metadata Working Group. (2017). DataCite metadata schema 4.1. DataCite Schema.

Digens, A. (2014). These artists are turning space junk into sound art. Creators.

DOI handbook. (n.d.).

Dublin Core Metadata Initiative. (2012). DCMI terms. Dublin Core.

ESA. (n.d.). Products and algorithms. Sentinel.

European Commission. (n.d.). Digital Single Market. Proposal for a revision of the public sector information (PSI) directive. Digital Single Market.

European Research Council (ERC). (2017). Guidelines on implementation of open access to scientific publications and research data in projects supported by the European Research Council under Horizon 2020. Version 1.1. (n.d.). Fairdata.

Finnish Committee for Research Data. (2018). Tracing data: data citation roadmap for Finland.

Finnish Committee for Research Data.

Force11: The fair data principles. (2014). FORCE11.

Hox, J. J., & Boeije, H. R. (2005). Data collection, primary versus secondary. In Encyclopedia of social measurement (pp. 593–599). Elsevier.

IANA media types. (n.d.). IANA.

Laine, H., & Nykyri, S. (2018). Dataviittaamisen tiekartta tutkijalle. Informaatiotutkimus, 37(2).

Manovich, L. (2001). The language of new media. MIT Press.

MANTRA. (2017). Research data explained.

Matthiesen, M., & Dieckmann, U. (2018). Versioning with PIDs. In CLARIN Annual Conference 2018 in Pisa, Italy. CLARIN.

Mclver, J. P. (2011). Raw data. In P. Lavrakas (ed.), Encyclopedia of survey research methods. Thousand Oaks: SAGE Publications, Inc.

Metax research datasets. (n.d.). Tietomallit.

Mons, B. (2018). Data stewardship for open science: Implementing fair principles. Chapman and Hall/CRC.

National digital preservation services. (n.d.).

Pericles. (n.d.). Pericles.

PREMIS: Preservation Metadata Maintenance Activity (Library of Congress). (n.d.). PREMIS.

Rauber, A., van Uytvanck, D., Asmi, A., & Pröll, S. (2016). Identification of reproducible subsets for data citation, sharing and re-use. Research Data Alliance.

Research guides: Data module #1: What is research data? (2017).

Research methods help guide. (n.d.).

Shafer, T. (2017). The 42 V’s of big data and data science. Elder Research.

Spichtinger, D. (2016). Open / fair research data in horizon 2020.

UNIFI. (2018). Avoin tiede ja data. Toimenpideohjelma suomalaiselle tiedeyhteisölle. Universities Finland UNIFI.

Webopedia “active data”. (n.d.). Webopedia.

Weller, M. (2011). The digital scholar: How technology is transforming scholarly practice. Bloomsbury Academic.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A.,... Mons, B. (2016). The fair guiding principles for scientific data management and stewardship. Scientific Data, 3.





Parland-von Essen, J., Fält, K., Maalick, Z., Alonen, M., & Gonzalez, E. (2018). Supporting FAIR data: categorization of research data as a tool in data management. Informaatiotutkimus, 37(4).