Supporting FAIR data: categorization of research data as a tool in data management
DOI:
https://doi.org/10.23978/inf.77419Avainsanat:
research data management, data management, FAIR principles, persistent identifiers [http://www.yso.fi/onto/yso/p29018], data citation, open scienceAbstrakti
The demand for implementation of the FAIR data principles is in many cases difficult for a researcher to adhere to in efficient ways due to lacking tools. We suggest categorizing data in a more extensive and systematic way with focus on the inherent properties of the data as means to enhancing research data services. After discussing different approaches to categorizing data, we propose a tripartite research data categorization based around the inherent aspect of stability. The three research data types are operational data, generic research data and research data publications. Generic research data is validated data and can be cumulative, i.e. data can be added without versioning, however if it is dynamic it should be versioned. Generic research data should be separated from immutable dataset publications that are published for reasons of reproducibility of specific research results.
Lähdeviitteet
ANDS. (n.d.). Guides and resources. Persistent identifiers. Australian national data service. https://www.ands.org.au/guides/persistent-identifiers-expert
ATT. (2017). Oikeuksien hallintaan liittyvät metatiedot -selvitys. Opetus- ja kulttuuriministeriö. http://urn.fi/URN:NBN:fi-fe201702101528
Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533(7604), 452. https://doi.org/10.1038/533452a
Business Dictionary. (n.d.). What is active data? Definition and meaning. BusinessDictionary.com. http://www.businessdictionary.com/definition/active-data.html
CEOS Data Stewardship Interest Group. (2017). Persistent identifier best practices. Version 1.2. CEOS/wgiss/dsig/pidbp. http://ceos.org/document_management/Working_Groups/WGISS/Documents/WGISS/%20Best/%20Practices/CEOS/%20Persistent/%20Identifier/%20Best/%20Practices_v1.2.pdf
DataCite Metadata Working Group. (2017). DataCite metadata schema 4.1. DataCite Schema. http://doi.org/10.5438/0014
Digens, A. (2014). These artists are turning space junk into sound art. Creators. https://www.vice.com/en_au/article/9anad3/artists-are-transforming-space-junk-into-sound-art
DOI handbook. (n.d.). http://doi.org/10.1000/182
Dublin Core Metadata Initiative. (2012). DCMI terms. Dublin Core. http://dublincore.org/documents/dcmi-terms/
ESA. (n.d.). Products and algorithms. Sentinel. https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/products-algorithms
European Commission. (n.d.). Digital Single Market. Proposal for a revision of the public sector information (PSI) directive. Digital Single Market. https://ec.europa.eu/digital-single-market/en/proposal-revision-public-sector-information-psi-directive
European Research Council (ERC). (2017). Guidelines on implementation of open access to scientific publications and research data in projects supported by the European Research Council under Horizon 2020. Version 1.1. http://ec.europa.eu/research/participants/data/ref/h2020/other/hi/oa-pilot/h2020-hi-erc-oa-guide_en.pdf
Fairdata.fi. (n.d.). Fairdata. https://www.fairdata.fi/
Finnish Committee for Research Data. (2018). Tracing data: data citation roadmap for Finland.
Finnish Committee for Research Data. http://urn.fi/URN:NBN:fi-fe201804106446
Force11: The fair data principles. (2014). FORCE11. https://www.force11.org/group/fairgroup/fairprinciples
Hox, J. J., & Boeije, H. R. (2005). Data collection, primary versus secondary. In Encyclopedia of social measurement (pp. 593–599). Elsevier. http://hdl.handle.net/1874/23634
IANA media types. (n.d.). IANA. https://www.iana.org/assignments/media-types/media-types.xhtml
Laine, H., & Nykyri, S. (2018). Dataviittaamisen tiekartta tutkijalle. Informaatiotutkimus, 37(2). https://doi.org/10.23978/inf.72999
Manovich, L. (2001). The language of new media. MIT Press.
MANTRA. (2017). Research data explained. https://doi.org/10.5281/zenodo.1035218
Matthiesen, M., & Dieckmann, U. (2018). Versioning with PIDs. In CLARIN Annual Conference 2018 in Pisa, Italy. CLARIN. https://www.clarin.eu/clarin-annual-conference-2018-abstracts
Mclver, J. P. (2011). Raw data. In P. Lavrakas (ed.), Encyclopedia of survey research methods. Thousand Oaks: SAGE Publications, Inc. https://doi.org/10.4135/9781412963947.n447
Metax research datasets. (n.d.). Tietomallit. https://tietomallit.suomi.fi/model/mrd/CatalogRecord/
Mons, B. (2018). Data stewardship for open science: Implementing fair principles. Chapman and Hall/CRC. https://www.crcpress.com/Data-Stewardship-for-Discovery-A-Practical-Guide-for-Data-Experts/Mons/p/book/9780815348184
National digital preservation services. (n.d.). digitalpreservation.fi. http://digitalpreservation.fi/en
Pericles. (n.d.). Pericles. http://pericles-project.eu/training-module/space-data/space-project-phasing-data-levels-and-data-use/processing-levels/
PREMIS: Preservation Metadata Maintenance Activity (Library of Congress). (n.d.). PREMIS. https://www.loc.gov/standards/premis/
Rauber, A., van Uytvanck, D., Asmi, A., & Pröll, S. (2016). Identification of reproducible subsets for data citation, sharing and re-use. Research Data Alliance. https://www.rd-alliance.org/system/files/documents/TCDL-RDA-Guidelines_160411.pdf
Research guides: Data module #1: What is research data? (2017). https://libguides.macalester.edu/c.php?g=527786/&p=3608643
Research methods help guide. (n.d.). https://library.fiu.edu/friendly.php?s=researchmethods/datatypes
Shafer, T. (2017). The 42 V’s of big data and data science. Elder Research. https://www.elderresearch.com/blog/42-v-of-big-data
Spichtinger, D. (2016). Open / fair research data in horizon 2020. https://ec.europa.eu/easme/sites/easme-site/files/open_fair_research_data_in_h2020.pdf
UNIFI. (2018). Avoin tiede ja data. Toimenpideohjelma suomalaiselle tiedeyhteisölle. Universities Finland UNIFI. http://urn.fi/URN:NBN:fi-fe2018052424593
Webopedia “active data”. (n.d.). Webopedia. https://www.webopedia.com/TERM/A/active_data.html
Weller, M. (2011). The digital scholar: How technology is transforming scholarly practice. Bloomsbury Academic. https://doi.org/10.5040/9781849666275
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A.,... Mons, B. (2016). The fair guiding principles for scientific data management and stewardship. Scientific Data, 3. https://doi.org/10.1038/sdata.2016.18
Tiedostolataukset
Julkaistu
Viittaaminen
Numero
Osasto
Lisenssi
Copyright (c) 2018 Jessica Parland-von Essen, Katja Fält, Zubair Maalick, Miika Alonen, Eduardo Gonzalez

Tämä työ on lisensoitu Creative Commons Nimeä-EiKaupallinen-JaaSamoin 4.0 Kansainvälinen Julkinen -lisenssillä.
Lehdessä julkaistut kirjoitukset on lisensoitu Creative Commons Nimeä-EiKaupallinen-JaaSamoin 4.0 Kansainvälinen Julkinen -lisenssillä.
Tekijänoikeus säilyy kirjoittajalla siten, että sen alkuperäinen julkaisuoikeus on Informaatiotutkimus-lehdellä sekä digitaalisena että painettuna vuosikirjassa. Artikkelia voi vapaasti käyttää opetuksessa ja muihin ei-kaupallisiin tarkoituksiin siten, että lähteenä mainitaan tekijä, artikkeli, lehden numero sekä artikkelin URL-osoite kokonaisuudessaan.
Artikkelin kustantaja-PDF -version saa tallentaa lehden numeron julkaisun jälkeen julkaisuarkistoon tai muuhun vastaavaan palveluun, kunhan artikkelin alkuperäinen osoite mainitaan.