Macro- and microscale gaseous diffusion in a Stagnic Luvisol as affected by compaction and reduced tillage
DOI:
https://doi.org/10.2137/145960608786118820Abstract
Intensification of mechanical agriculture has increased the risk for soil compaction and deformation. Simultaneously, reduced tillage practices have become popular due to energy saving and environmental concerns, as they may strengthen and improve the functioning of structured soil pore system. Soil aeration is affected by both compaction and reduced tillage through changes in soil structure and in the distribution of easily decomposable organic matter. We investigated whether a single wheeling by a 35 000 kg sugar-beet harvester in a Stagnic Luvisol derived from loess near Göttingen, Germany, influenced the gas transport properties (air permeability, gaseous macro- and microdiffusivities, oxygen diffusion rate) in the topsoil and subsoil samples, and whether the effects were different between long-term reduced tillage and mouldboard ploughing. Poor structure in the topsoil resulted in slow macro- and microscale gas transport at moisture contents near field capacity. The macrodiffusivities in the topsoil under conventional tillage were slower compared with those under conservation treatment, and soil compaction reduced the diffusivities by about half at the soil depths studied. This shows that even one pass with heavy machinery near field capacity impairs soil structure deep into the profile, and supports the view that reduced tillage improves soil structure and aeration compared with ploughing, especially in the topsoil.;Downloads
Published
Issue
Section
License
Authors who publish with Agricultural and Food Science agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Any part of the Agricultural and Food Science may be referred to assuming the Author, The Article, Publication with Volume and Number plus URL for the references have been provided.

