Incorporation of 15N and 14C into amino acids of bacterial and protozoal protein in the rumen of the cow on urea-rich feed

Authors

  • Eeva-Liisa Syväoja Biochemical Research Institute, Kalevankatu 56 b, SF-00180 Helsinki 18, Finland
  • Matti Kreula Biochemical Research Institute, Kalevankatu 56 b, SF-00180 Helsinki 18, Finland

Abstract

The utilization of the non-protein nitrogen and carbon of feed by rumen microorganisms for the synthesis of protein was studied by administering [U-14C] sucrose and 15NH4Cl to a cow on urea-rich, low-protein feed. By studying the labelling of the protozoa and bacteria and the amino acids isolated from them at intervals up to 48 hours afterwards, it was found that the bacteria synthesized amino acids from nonprotein nitrogen much more rapidly and effectively than the protozoa. Also the labelling of the carbon in the amino acids of the bacteria was more rapid than in the protozoa. In both protozoa and bacteria there was intracellular storage of [14C] sucrose. Of the bacterial amino acids the most vigorous 14C labelling was found in Glu, Arg, Lys, Val and Ala and the weakest labelling in Gly, His and Ser. Of the protozoal amino acids Ala, Asp, Glu, Leu and Lys had the highest labelling and Pro, Gly, His and Phe the lowest. In the bacterial protein the labelling of Pro and Arg was ten times that of the corresponding protozoal amino acids, and Asp, Ser and Ala four times. After the 15NH4Cl dose the half-life of 15N in the rumen fluid was estimated to be 3.3 h. Labelled ammonium nitrogen was about 11 —15 % of the bacterial nitrogen and 2—3 % of the protozoal nitrogen after 1 h. Of the protozoal amino acids Ala, Glu, Val, Asp and Met had the most vigorous labelling, and of the bacterial amino acids Glu, Asp, Ser, He and Tyr. The slowest incorporation of ammonium nitrogen was into His, Pro, Arg and Gly in both bacteria and protozoa. The labelling of the bacterial amino acids was approximately 7—8 times more vigorous than that of the protozoal amino acids. The labelling of Ala was only 4 times, and that of Val, Met and Glu 5 times more vigorous than with protozoal protein. The pathway of histidine synthesis seemed to be restricted in both bacteria and protozoa and therefore may be a limiting factor in protein synthesis, particularly in cows fed urea as the sole source of nitrogen. Of the 14C and 15N label given, 12.9 and 9 % respectively was secreted in the milk during the first 3 days; over the same period the 14C and 15N excreted in the faeces plus urine accounted for 16.9 and 44.3 % respectively of that administered.

Downloads

Download data is not yet available.
Section
Articles

Published

1979-01-01

How to Cite

Syväoja, E.-L., & Kreula, M. (1979). Incorporation of 15N and 14C into amino acids of bacterial and protozoal protein in the rumen of the cow on urea-rich feed . Agricultural and Food Science, 51(1), 497–505. https://doi.org/10.23986/afsci.72011