Impact of sustainable tillage on biophysical properties of Planosol and on faba bean yield
Keywords:
cold climate, tillage systems, soil properties, grain yield, Vicia fabaAbstract
Decreased tillage intensity can contribute to a reduced agro-technological footprint and stabilise the negative impact of climate change, especially in leguminous crop cultivation. For this reason, a long-term (since 1988) stationary field experiment has been performed on silty loam Planosol (in Lithuania). The main objective of this study was to establish the influence of sustainable tillage and no-tillage systems on soil aggregate stability to water, penetration resistance, enzymatic activity, abundance of earthworm and faba bean grain yield. Five different tillage systems were investigated: conventional deep and shallow mouldboard ploughing, deep chiselling, shallow disking and no-tillage. No-tillage in faba bean cultivation significantly increased soil structural stability by 40–97%, saccharase content by 0.7–2.0 times, urease activity by 3–4 times, the average quantity of earthworm by 55% and the biomass by 3.6 times. The impact of other ploughless tillage systems on soil properties was positive but not as significant. Faba bean grain yield was more influenced by growing seasons than by different tillage methods.
Downloads
How to Cite
Copyright (c) 2019 Agricultural and Food Science
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2019-09-05
Published 2019-09-30