Yield response of iceberg lettuce (Lactuca sativa Capitata group) to phosphorus fertilisation in a boreal soil

Authors

  • Risto Uusitalo Natural Resources Institute Finland (Luke)
  • Terhi Suojala-Ahlfors Natural Resources Institute Finland (Luke)

DOI:

https://doi.org/10.23986/afsci.115347

Keywords:

yield model , planting time, open field experiment, Plant Root Simulator probe

Abstract

Cold soils and a short boreal growing season are assumed to necessitate high soil phosphorus (P) status and ample P applications to vegetable crops. Yet, a previous Finnish study indicated lower than anticipated yield responses of onion and cabbage. Here we report 2-year P trials with iceberg lettuce (cv. Skindel) transplanted in an open field in spring and midsummer on a clay soil with moderately low P status. During the spring plantings, P concentration in soil solution was followed using Plant Root Simulator (PRS) probes in P0 (0 kg P ha-1) and P60 (60 kg P ha-1) treatments. The PRS probes indicated initially 5 to 7-fold higher soil solution P concentration in the P60 treatment compared to P0 due to fertilisation, but thereafter P concentrations equalised. For spring plantings, P applications did not explain yield variation, giving statistically non-significant, maximum 14% higher yields over P0. In summer plantings, about 30% of the yield variation was explained by P applications, and the P60 rate gave 20–35% higher yields over P0. Mitscherlich type model integrating all data predicted a maximum 20% yield increase, 10% of the variation being accounted for. The model suggested that 32 kg P ha-1 brings 97% of the maximum yield, whilst the Finnish P fertilisation regulation allows 60 kg ha-1 for the given soil. No correlation between P applications and P concentrations of lettuce leaves was found. The results stress the need for empirical evaluation of P requirements of vegetable crops to avoid unnecessary P applications.

References

Alt, D. 1987. Influence of P and K fertilization on the yield of different vegetable species. Journal of Plant Nutrition 10: 1429–1435.https://doi.org/10.1080/01904168709363675

Costigan, P.A. 1986. The effects of soil temperature on the response of lettuce seedlings to starter fertilizer. Plant and Soil 93: 183–193. https://doi.org/10.1007/BF02374220

Elonen, P. 1971. Particle-size analysis of soil. Acta Agria Fennica 122: 1–122.

Grant, C.A., Flaten, D.N., Tomasiewicz, D.J. & Sheppard, S.C. 2001. The importance of early season phosphorus nutrition. Canadian Journal of Plant Science 81: 211–224. https://doi.org/10.4141/P00-093

Greenwood, D.J., Cleaver, T.J., Turner, M.K., Hunt, J., Niendorf, K.B. & Loquens, S.M.H. 1980. Comparison of the effects of phosphate fertilizer on the yield, phosphate content and quality of 22 different vegetable and agricultural crops. Journal of Agricultural Science, Cambridge 95: 457–469. https://doi.org/10.1017/S0021859600039502

Hartz, T.K. & Johnstone, P.R. 2006. Relationship between soil phosphorus availability and phosphorus loss potential in runoff and drainage. Communications in Soil Science and Plant Analysis 37: 1525–1536. https://doi.org/10.1080/00103620600710058

Heckrath, G., Brookes, P.C., Poulton, P.R. & Goulding, K.W.T. 1995. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. Journal of Environmental Quality 24: 904–910. https://doi.org/10.2134/jeq1995.00472425002400050018x

Hochmuth, G., Hanlon, E., Nagata, R., Snyder, G. & Schueneman, T. 1994. Fertilization Recommendations for Crisphead Lettuce Grown on Organic Soils in Florida. SP153. Gainesville: University of Florida Institute of Food and Agricultural Sciences. http://edis.ifas.ufl.edu/wq114.

Hoque, M.M., Ajwa, H. & Othman, M. 2010. Yield and postharvest quality of lettuce in response to nitrogen, phosphorus, and potassium fertilizers. HortScience 45: 1539–1544. https://doi.org/10.21273/HORTSCI.45.10.1539

Johnstone, P.R., Hartz, T.K., Cahn, M.D. & Johnstone, M.R. 2005. Lettuce response to phosphorus fertilization in high phosphorus soils. HortScience 40: 1499–1503. https://doi.org/10.21273/HORTSCI.40.5.1499

Lewis, D.G. & Quirck, J.P. 1965. Diffusion of phosphate to plant roots. Nature 205: 765–766. https://doi.org/10.1038/205765a0

Mehlich, A. 1984. Mehlich-3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analyses 15: 1409–1416. https://doi.org/10.1080/00103628409367568

Meier, J. 2018. Growth stages of mono- and dicotyledonous plants. BBCH Monograph. Quedlinburg: Julius Kühn-Institut. 204 p. https://www.julius-kuehn.de/media/Veroeffentlichungen/bbch%20epaper%20en/page.pdf.

Nagata, R.T., Sanchez, C.A. & Coale, F.J. 1992. Crisphead lettuce cultivar response to fertilizer phosphorus. Journal of the American Society for Horticultural Science 117: 721–724. https://doi.org/10.21273/JASHS.117.5.721

Neyroud, J.-A. & Lischer, P. 2003. Do different methods used to estimate soil phosphorus availability across Europe give comparable results? Journal of Plant Nutrition and Soil Science 166: 422–431.https://doi.org/10.1002/jpln.200321152

Niskanen, R. & Jaakkola, A. 1986. Estimation of cation-exchange capacity in routine soil testing. Agricultural and Food Science 58: 1–7. https://doi.org/10.23986/afsci.72214

Olsen, S.R. & Sommers, L.E. 1982. Phosphorus. In: Page, A.L. (ed). Methods of Soil Analysis Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison, WI. p. 403–430. https://doi.org/10.2134/agronmonogr9.2.2ed.c24

Prasad, M., Spiers, T.M. & Ravenwood, I.C. 1988. Target phosphorus soil test values for vegetables. New Zealand Journal of Experimental Agriculture 16: 83–90. https://doi.org/10.1080/03015521.1988.10425619

Riley, H., Stubhaug, E., Kristoffersen, A.Ø., Krogstad, T., Guren, G. & Tajet, T. 2012. P-gjødsling til grønnsaker: Evaluering og nye anbefalinger. Bioforsk Rapport Vol. 7, Nr. 68. ISBN-13: 978-82-17-00929-0. (in Norwegian)

Sanchez, C.A., Swanson, S. & Porter, P.S. 1990. Banding P to improve fertilizer use efficiency of lettuce. Journal of the American Society for Horticultural Science 115: 581–584. https://doi.org/10.21273/JASHS.115.4.581

Sanchez, C.A. & El-Hout, N.M. 1995. Response of diverse lettuce types to fertilizer phosphorus. HortScience 30: 528–531. https://doi.org/10.21273/HORTSCI.30.3.528

Smith, R. & Hartz, T. 2008. Phosphorus fertilizer management for lettuce production and water quality protection. University of California. Cooperative Extension, Monterey County, Crop Notes, November/December 2008: 3–5.

Stubhaug, E., Riley, H. & Kristoferssen, A.Ø. 2015. P-gjødsling til brokkoli, blomkål, kålrot og isbergsalat. Nye anbefalinger. Bioforsk Rapport Vol. 10 Nr. 14. ISBN-13: 978-82-17-01397-6. (in Norwegian)

Uusitalo, R., Suojala-Ahlfors, T., Kivijärvi, P. & Hurme, T. 2018. Yield responses to P fertilisation of onion (Allium cepa L.) and cabbage (Brassica oleracea Capitata Group, L.) in Finland. Agricultural and Food Science 27: 63–73. https://doi.org/10.23986/afsci.67703

Valkama, E., Uusitalo, R. & Turtola, E. 2011. Yield response models to phosphorus application: a research synthesis of Finnish field trials to optimize fertiliser P use of cereals. Nutrient Cycling in Agroecosystems 91: 1–15. https://doi.org/10.1007/s10705-011-9434-4

Valkama, E., Virkajärvi, P., Uusitalo, R., Ylivainio, K. & Turtola, E. 2015. Meta-analysis of grass ley response to phosphorus fertilisation in Finland. Grass and Forage Science 71: 36–53. https://doi.org/10.1111/gfs.12156

Vuorinen, J. & Mäkitie, O. 1955. The method of soil testing in use in Finland. Agrogeological Publications 63: 1–44.

Withers, P.J.A., Vadas, P.A., Uusitalo, R., Forber, K.J., Hart, M., Foy, R.H., Delgado, A., Dougherty, W., Lilja, H., Burkitt, L.L., Rubæk, G.H., Pote, D., Barlow, K., Rothwell, S. & Owens, P.R. 2019. A global perspective on integrated strategies to manage soil phosphorus status for eutrophication control without limiting land productivity. Journal of Environmental Quality 48: 1234–1246. https://doi.org/10.2134/jeq2019.03.0131

Yli-Halla, M. 1989. Reversibly adsorbed P in mineral soils of Finland. Communications in Soil Science and Plant Analysis 20: 695–709. https://doi.org/10.1080/00103628909368109

Ylivainio, K. & Peltovuori, T. 2012. Phosphorus acquisition by barley (Hordeum vulgare L.) at suboptimal soil temperature. Agricultural and Food Science 21: 453–461. https://doi.org/10.23986/afsci.6389

Downloads

Published

2022-08-31 — Updated on 2022-09-30

Versions

Issue

Section

Articles

How to Cite

Yield response of iceberg lettuce (Lactuca sativa Capitata group) to phosphorus fertilisation in a boreal soil. (2022). Agricultural and Food Science, 31(3), 220–228. https://doi.org/10.23986/afsci.115347 (Original work published 2022)
Received 2022-03-10
Accepted 2022-08-25
Published 2022-09-30